Những câu hỏi liên quan
TT
Xem chi tiết
NM
4 tháng 10 2021 lúc 7:03

Áp dụng Pytago \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=9\left(cm\right)\\AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
H24
4 tháng 10 2021 lúc 7:09

undefined

Bình luận (0)
TT
Xem chi tiết
TH
30 tháng 9 2021 lúc 12:20

bài 9
tam giác ABC vuông tại A có
* BC2=AB2+AC2
  BC2=152+202=625
  BC=25cm
* AH.BC=AB.AC
  AH.25=15.20
  AH.25=300
  AH=12cm

Bình luận (0)
TH
30 tháng 9 2021 lúc 12:26

tam giác ABH vuông tại H có
BH2=AB2-AH2
BH2=152-122=81
BH=9cm
tam giác ABC vuông tại A có
*AB2=BH.BC
225=9.BC
BC=25cm
CH=BC-BH=25-9=16cm
*AC2=BC2-AB2
 AC2=252-152=400
 AC=20cm

Bình luận (0)
TT
Xem chi tiết
NQ
Xem chi tiết
NT
3 tháng 9 2021 lúc 23:02

Đề 1: 

a: Xét ΔABH vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay HB=18(cm)

Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)

Xét ΔACH vuông tại H có 

\(AC^2=AH^2+HC^2\)

nên AC=40(cm)

b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có

\(\widehat{HAC}=\widehat{HDB}\)

Do đó: ΔAHC\(\sim\)ΔDHB

Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)

hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)

Bình luận (0)
HH
Xem chi tiết
QA
Xem chi tiết
NT
23 tháng 3 2021 lúc 21:13

à thanks mình xin lỗi nhé ! 

a, Xét tam giác HAC và tam giác ABC ta có 

^AHC = ^BAC = 900

^C _ chung 

Vậy tam giác HAC ~ tam giác ABC ( g.g ) (1) 

\(\Rightarrow\frac{HA}{AB}=\frac{AC}{BC}\) ( tí số đồng dạng ) (3) 

Xét tam giác HAB và tam giác ABC ta có : 

^AHB = ^BAC = 900

^B _ chung 

Vậy tam giác HAB ~ tam giác ABC ( g.g ) (2)

Từ (1) ; (2) suy ra : tam giác HAC ~ tam giác HAB 

b, Từ (3) ta có : \(\frac{HA}{15}=\frac{20}{25}\)( BC = 25 cm theo Py ta go )

\(\Rightarrow HA=\frac{15.20}{25}=12\)cm 

Bình luận (0)
 Khách vãng lai đã xóa
PD
24 tháng 3 2021 lúc 8:42

A B C H M N I

Bình luận (0)
 Khách vãng lai đã xóa
PD
24 tháng 3 2021 lúc 8:53

Kéo dài MN, cắt AC tại I. Do đó N là giao điểm của MI và AH (vì \(N\in AH\)) và \(I\in AC\)

Xét \(\Delta HAB\)có:

\(MB=MH\)(giả thiết).

\(NA=NH\)(giả thiết).

\(\Rightarrow MN\)là đường trung bình của \(\Delta HAB\).

\(\Rightarrow MN//AB\)(tính chất).

\(\Rightarrow MI//AB\).

Mà \(AB\perp AC\)(vì \(\Delta ABC\)vuông tại A).

\(\Rightarrow MI\perp AC\)

Xét \(\Delta MAC\)có:

\(MI\perp AC\left(I\in AC\right)\)(chứng minh trên).

\(AH\perp MC\)(vì \(AH\perp BC\)).

Và N la giao điểm của MI và AH.

\(\Rightarrow N\)là trực tâm của \(\Delta MAC\)

\(\Rightarrow CN\perp AM\)(điều phải chứng minh).

Bình luận (0)
 Khách vãng lai đã xóa
HA
Xem chi tiết
NT
2 tháng 8 2021 lúc 20:11

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
TN
Xem chi tiết
PA
Xem chi tiết
NT
2 tháng 10 2021 lúc 20:19

Xét ΔBAC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=12(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=7,2\left(cm\right)\\BH=5,4\left(cm\right)\\CH=9,6\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
HN
Xem chi tiết
NT
12 tháng 7 2021 lúc 1:01

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

Bình luận (0)
NT
12 tháng 7 2021 lúc 1:04

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=15^2-12^2=81\)

hay BH=9(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)

hay CH=16(cm)

Bình luận (0)
NT
12 tháng 7 2021 lúc 1:05

c) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{15}=\dfrac{CD}{25}=\dfrac{AD+CD}{15+25}=\dfrac{20}{40}=\dfrac{1}{2}\)

Do đó: AD=7,5cm; CD=12,5cm

Bình luận (0)