Những câu hỏi liên quan
CA
Xem chi tiết
NT
10 tháng 1 2023 lúc 7:34

a:\(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)

AH=4*3/5=2,4cm

b: ΔCAD cân tại C

mà CH là đường cao

nên CH là phân giác của góc ACD

Xét ΔCAB và ΔCDB có

CA=CD

góc ACB=góc DCB

CB chung

Do dó: ΔCAB=ΔCDB

=>góc CDB=90 độ

=>BD là tiếp tuyến của (C)

Bình luận (0)
NS
Xem chi tiết
NT
9 tháng 5 2023 lúc 14:46

2: Xét ΔCAD và ΔCEA có

góc C chung

góc CAD=góc CEA

=>ΔCAD đồng dạng với ΔCEA

=>CA/CE=CD/CA

=>CA^2=CE*CD

Bình luận (0)
TT
Xem chi tiết
CH
6 tháng 8 2018 lúc 17:14

Xét tam giác vuông AHC và tam giác vuông AED có:

AE = AH

\(\widehat{HAC}=\widehat{EAD}\)   (Hai góc đối đỉnh)

\(\Rightarrow\Delta AHC=\Delta AED\)   (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow AC=AD\)

Xét tam giác BDC có BA là đường cao đồng thời trung tuyến nên nó là tam giác cân. Vậy thì BA cũng là tia phân giác góc B.

Gọi H' là chân đường vuông góc hạ từ A xuống BD.

Ta thấy ngay \(\Delta H'BA=\Delta HBA\)   (Cạnh huyền góc nhọn)

Vậy thì AH' = AH

Suy ra BD là tiếp tuyến của đường tròn tâm A, bán kính AH.

Bình luận (0)
H24
Xem chi tiết
LP
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
NT
31 tháng 12 2023 lúc 11:51

a: Ta có: ΔCAD cân tại C

mà CH là đường cao

nên CH là phân giác của góc ACD

Xét ΔCAB và ΔCDB có

CA=CD

\(\widehat{ACB}=\widehat{DCB}\)

CB chung

Do đó: ΔCAB=ΔCDB

=>\(\widehat{CAB}=\widehat{CDB}\)

mà \(\widehat{CAB}=90^0\)

nên \(\widehat{CDB}=90^0\)

=>BD là tiếp tuyến của (C)

b: Xét (C) có

PA,PM là các tiếp tuyến

Do đó: PA=PM và CP là phân giác của góc ACM

Vì CP là phân giác của góc ACM

nên \(\widehat{ACM}=2\cdot\widehat{PCM}\)

Xét (C) có

QM,QD là các tiếp tuyến

Do đó: CQ là phân giác của góc MCD

=>\(\widehat{MCD}=2\cdot\widehat{MCQ}\)

Ta có: \(\widehat{MCD}+\widehat{MCA}=\widehat{DCA}\)

=>\(\widehat{DCA}=2\cdot\left(\widehat{MCQ}+\widehat{MCP}\right)\)

=>\(\widehat{DCA}=2\cdot\widehat{PCQ}\)

=>\(\widehat{PCQ}=\dfrac{sđ\stackrel\frown{AD}}{2}\left(1\right)\)

Xét ΔBEF có

BC là đường cao

BC là đường phân giác

Do đó: ΔBEF cân tại B

=>BE=BF

Xét ΔBEF có \(\dfrac{BA}{BE}=\dfrac{BD}{BF}\)

nên AD//EF

=>\(\widehat{BAD}=\widehat{BEF}\)

mà \(\widehat{BAD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AD}\)(góc tạo bởi tiếp tuyến BA và dây cung AD)

nên \(\widehat{BEF}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AD}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{BEF}=\widehat{PCQ}\)

 

Bình luận (0)
H24
Xem chi tiết
NT
Xem chi tiết
NU
8 tháng 12 2017 lúc 17:36

hình bạn tự kẻ nha

a>   Xét tam giác ADE và tam giác AHB có : góc DAE = HAB(đối đỉnh);  góc ADE = góc AHB = 90 độ; AD = AH = bán kính==> tg ADE = AHB (c.g.v_g.n.k)

b>    vì tg ADE = AHB ==> AE = AB ==> A là trung điểm của BE (1)

        xét tg CBE ta thấy CA vuông góc với AB ==> CA là đường cao (2)

         từ (1) và (2) ==> tg CBE cân tại C

c>    vì tg CBE cân tại C ==> CA vừa là đường cao vừa là tia pg xuất phát từ đỉnh C ==> góc ACH = ACI 

        xét tg ACH và tg ACI có: góc AHC = AIC = 90 độ;  AC là cạnh chung; góc ACH = ACI(cmt) ==> tg ACH = ACI (c.h_g.n)

                                                                                                                                                            => AH=AI=bán kính (3)

         mặt khác AI vuông góc với CE (4)

         từ (3) và (4) ==> CE là tiếp tuyến ( khoảng cách từ tâm đến đường thẳng bằng bán kính)

Bình luận (0)
PT
Xem chi tiết