Ai giúp mình với ạ. Mình cảm ơn trước nha
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=a; AD=2a√(3). Cạnh bên SA vuông góc với đáy, biết tam giác SAD có diện tích bằng S=3a^2. Tính khoảng cách từ C đến (SBD)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB=a,AD=2a,SC=3a và SC vuông góc với mặt phẳng (ABCD). Tính góc giữa BD và (SAD)
Giúp em với ạ em cảm ơn nhìu!!!
Đề đúng là SC vuông góc (ABCD) phải không nhỉ?
Gọi O là giao điểm AC và BD \(\Rightarrow\) O đồng thời là trung điểm AC và BD
Gọi E và F lần lượt là trung điểm SA và AD, từ O kẻ \(OH\perp EF\) (1)
OE là đường trung bình tam giác SAC \(\Rightarrow\left\{{}\begin{matrix}OE=\dfrac{1}{2}SC=\dfrac{3a}{2}\\OE||SC\Rightarrow OE\perp\left(ABCD\right)\end{matrix}\right.\)
\(\Rightarrow OE\perp AD\)
OF là đường trung bình tam giác ACD \(\Rightarrow\left\{{}\begin{matrix}OF||CD\Rightarrow OF\perp AD\\OF=\dfrac{1}{2}CD=\dfrac{a}{2}\end{matrix}\right.\)
\(\Rightarrow AD\perp\left(OEF\right)\) \(\Rightarrow AD\perp OH\) (2)
(1);(2) \(\Rightarrow OH\perp\left(SAD\right)\)
\(\Rightarrow HD\) là hình chiếu vuông góc của OD lên (SAD)
\(\Rightarrow\widehat{HDO}\) là góc giữa BD và (SAD)
Hệ thức lượng: \(\dfrac{1}{OH^2}=\dfrac{1}{OE^2}+\dfrac{1}{OF^2}\Rightarrow OH=\dfrac{OE.OF}{\sqrt{OE^2+OF^2}}=\dfrac{3a\sqrt{10}}{20}\)
\(OD=\dfrac{1}{2}BD=\sqrt{AB^2+AD^2}=\dfrac{a\sqrt{5}}{2}\)
\(\Rightarrow sin\widehat{HDO}=\dfrac{OH}{OD}=\dfrac{3\sqrt{2}}{10}\Rightarrow\widehat{HDO}\approx25^06'\)
cho hinhg chóp S.ABCD có đáy ABCD là hình chữ nhật AB=a, BC=2a. Cạnh bên SA vuông góc với đáy và SA=a. Xác định và tình góc giữa các mặt phẳng:
a) (SBC) và (ABCD)
b) (SCD) và (ABCD)
c) (SAB) và (SCD)
d) (SBC) và (SCD)
Giúp mình với ạ, mình cần gấp
MỌI NGƯỜI GIÚP MÌNH VỚI MÌNH CẢM ƠN NHIỀU
Bài 5. Cho hình chóp SABCD có đáy ABCD là hình chữ nhật; mặt phẳng (SAB) và (SAD)cùng vuông góc với đáy. Biết AB=a;AD=2a a. Cmr SA (ABCD): b. Biết góc giữa SD với mặt phẳng (ABCD) bằng 60° .Tính SA theo a c.Tính khoảng cách từ điểm A đến mặt phẳng (SCD) d. Gọi I là trung điểm AD, Tính khoảng cách từ điểm I đến mặt phẳng (SBC).
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA vuông góc với mặt đáy (ABCD), AB = a, AD = 2a, SA =a. Tính thể tích khối chóp S.ABCD.
A. 2a3
B. a3
C. a3/3
D. 2a3/3
Đáp án D
Diện tích hình chữ nhật ABCD là S = 2a2, chiều cao SA =a.
Vậy thể tích khối chóp S.ABCD là V = 1 3 . 2 a 2 . a = 2 3 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=a,AD=2a Biết SA vuông góc với mặt phẳng đáy và SA=3a . Thể tích hình chóp S.ABCD là:
A. 6 a 3
B. 2 a 2
C. 2 a 3
D. a 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a. Biết SA vuông góc với mặt phẳng đáy và SA = 3a. Thể tích hình chóp S.ABCD là:
A. 6 a 3
B. 12 a 3
C. 2 a 3
D. 1 3 a 3
Cho hình chóp S.ABCD có đáy (ABCD) là hình chữ nhật, cạnh bên SA vuông góc với đáy (ABCD). Biết AB=a, BC=2a và SC=3a . Tính thể tích khối chóp S.ABCD?
A. 2 a 3
B. a 3
C. 4 3 a 3
D. 2 5 3 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = 2 a , B C = a , S A = a 3 và SA vuông góc với mặt đáy (ABCD). Thể tích V của khối chóp S.ABCD bằng
A. V = 2 a 3 3 .
B. V = 2 a 3 3 3 .
C. V = a 3 3 .
D. V = a 3 3 3 .
Đáp án B
Do S A ⊥ A B C D
⇒ V S A B C D = 1 3 S A . d t A B C D = 1 3 S A . A B . B C = 1 3 a 3 .2 a . a = 2 a 3 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật A B = 2 a ; B C = a ; S A = a 3 và SA vuông góc với mặt đáy A B C D . Thể tích V của khối chóp S.ABCD bằng
A. V = 2 a 3 3
B. V = 2 a 3 3 3
C. V = a 3 3
D. V = a 3 3 3
Đáp án B
Thể tích khối chóp là
V = 1 3 S A . S A B C D = 1 3 . a . 3 .2 a . a = 2 a 3 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh bên SA vuông góc với đáy (ABCD). Biết AB=a, BC=3a, SA=2a.Tính thể tích V của khối chóp S.ABCD.
A. V = 3 a 3
B. V = 2 a 3
C. V = a 3
D. V = 6 a 3
Đáp án B
Thể tích khối chóp S.ABCD là:
V A B C D = 1 3 S A . S A B C D = 1 3 2 a .3 a 2 = 2 a 3