Những câu hỏi liên quan
SK
Xem chi tiết
NH
5 tháng 7 2017 lúc 8:00

Trường hợp đồng dạng thứ nhất

Bình luận (0)
ZZ
28 tháng 2 2018 lúc 21:21

+) Trong tam giác vuông A’B’C’ có \(\widehat{A'}=90^0\)

Áp dụng định lí Pi-ta-go, ta có:

A′B′2+A′C′2 =B′C′2

=> A′C′2=B′C′2−A′B′2=152−92=144

=> A’C’ =12 (cm)

Trong tam giác vuông ABC có \(\widehat{A}=90^0\)

Áp dụng định lí Pi-ta-go, ta có:

BC2=AB2+AC2= 62+82=100

Suy ra: BC = 10 (cm)

Ta có: \(\dfrac{A'B'}{AB}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\dfrac{A'C'}{AC}=\dfrac{12}{8}=\dfrac{3}{2}\)

\(\dfrac{B'C'}{BC}=\dfrac{15}{10}=\dfrac{3}{2}\)

Suy ra: \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=\dfrac{3}{2}\)

Vậy ∆ A’B’C’ đồng dạng với ∆ ABC

Bình luận (0)
SK
Xem chi tiết
NT
18 tháng 5 2022 lúc 13:29

Xét ΔABD có \(\widehat{B}>90^0\)

nen AD là cạnh lớn nhất

=>AB<AD(1)

XétΔADC có \(\widehat{ADC}>90^0\)

nên AC là cạnh lớn nhất

=>AD<AC(2)

Từ (1) và (2) suy ra AB<AD<AC

Bình luận (0)
SK
Xem chi tiết
HN
19 tháng 5 2017 lúc 8:14

A B C D E F

Xét hai tam giác vuông ABC và DEF có:

AC = DF (gt)

\(\widehat{ABC}=\widehat{DEF}\) (gt)

Vậy: \(\Delta ABC=\Delta DEF\left(cgv-gn\right)\).

Bình luận (0)
NA
Xem chi tiết
DH
Xem chi tiết
TN
Xem chi tiết
SK
Xem chi tiết
LV
22 tháng 4 2017 lúc 16:09
a) Ta có ΔABC vuông tại A và \(\widehat{C}\) = 300
\(\Rightarrow\)AB = 1/2BC ⇒ BC = 2AB
Vì BD là phân giác ⇒ DA/DC = AB/BC = AB/2AB =1/2
b) AB = 12,5 cm \(\Rightarrow\) BC = 25 cm Áp dụng định lí pitago vào tam giác ABC vuông tại A ta có : AC2= BC2 – AB2 = 252 – 12,52 AC = 21,65 (cm) CABC = AB+ BC+ CA =12,5+25+21,65 = 59,15(cm) SABC = 1/2AB.AC =1/2.12,5.21,65 = 135,31 (cm2)
Bình luận (1)
SK
Xem chi tiết
H24
20 tháng 4 2017 lúc 18:41

Giải:

Cách vẽ:

- Vẽ góc \(\widehat{xAy}\)=900

- Trên tia Ax vẽ đoạn thẳng AB= 3cm,

- Trên tia Ay vẽ đoạn thẳng AC= 3cm,

- Vẽ đoạn BC.

Ta vẽ được đoạn thẳng BC.

Ta đo các góc B và C ta được \(\widehat{B}=\widehat{C}\)=450

Bình luận (0)
HD
Xem chi tiết
TL
Xem chi tiết
DL
21 tháng 6 2019 lúc 21:46

A B C D H E I K O

Gọi Q và O lần lượt là giao điểm cuarDH và AB; HE và AC. ( Điểm Q chưa ký hiệu trên hình vì nhỏ quá nhé ).

Ta dễ dàng chứng minh được: tam giác vuông KHO = tam giác vuông KEO ( hai cạnh góc vuông )

=> \(\widehat{HKO}=\widehat{EKO}\)<=> KO là phân giác ngoài của tam giác IKH ( 1 )

Do \(AH\perp BC\)=> HC là phân giác ngoài của tam giác IKH ( 2 )

Mà KO cắt HC tại C ( 3 ). Từ ( 1 ); ( 2 ) và ( 3 ) => IC là phân giác trong của tam giác IKH <=> \(\widehat{HIC}=\widehat{CIK}=\frac{1}{2}\widehat{HIE}\)( * )

Ta dễ dàng chứng minh được : tam giác vuông DIQ = tam giác vuông HIQ ( hai cạnh góc vuông ) => \(\widehat{DIQ}=\widehat{QIH}=\frac{1}{2}\widehat{DIH}\)( # )

Do D; I ; E thẳng hàng ( theo bài ra ) nên \(\widehat{DIH}+\widehat{HIE}=180^o\)( % )

Từ ( * ); ( # ) và ( % ) => \(\widehat{QIH}+\widehat{HIC}=\frac{1}{2}\widehat{DIH}+\frac{1}{2}\widehat{HIE}\Leftrightarrow\widehat{BIC}=\frac{1}{2}\left(\widehat{DIH}+\widehat{HIE}\right)=\frac{1}{2}.180^o=90^o\)

Do hai góc AIC và BIC là hai góc nằm ở vị trí kề bù nên : \(\widehat{AIC}+\widehat{BIC}=180^o\Leftrightarrow\widehat{AIC}=180^o-\widehat{BIC}=180^o-90^o=90^o\)

Tương tự, ta chứng minh được \(\widehat{AKB}=90^o\)Vậy số đo \(\widehat{AIC},\widehat{AKB}\)đều là \(90^o.\)

Bình luận (0)
TL
22 tháng 6 2019 lúc 10:29

Cám ơn bạn Đỗ Đức Lợi nha !

Bình luận (0)