cho tam giác ABC có A=90 có AB=6 ; AC=8. BI là phân giác trong , CH\(\perp\)BI(H∈BI). tính độ dài cạnh BC ;AI
cho mik hỏi :Cho tam giác ABC, có góc A khác 90 độ ,AB=6 cm, BC=10 cm tính diện tích tam giác ABC
có
\(AB^2+AC^2=BC^2\)
=>\(6^2+AC^2=10^2\)
=>
CÓ
\(AC^2+AB^2=BC^2\left(PYTAGO\right)\)
=>\(AC^2+6^2=10^2\)
=>\(AC^2=100-36=64\)
=>\(AC=\sqrt{64}=8\)
DIỆN TÍCH TAM GIÁC VUÔNG BẰNG TÍCH 2 CẠNH GÓC VUÔNG CHIA 2
\(\frac{8x6}{2}=24\left(cm^2\right)\)
vậy diên tích tam giác vuông ABC vuông tại A là 24cm2
Cho tam giác ABC có <A = 900 . có AB=6 AC=8 BC=10 . Đường cao AH
a) cho AD là đg pg cảu tam giác ABC . TÍnh DB DC
b) cm AB2=BH.HC
Cho tam giác ABC có góc A=90 độ; AB=3cm; AC=4cm và tam giác MNP có N=90 độ; MN=8cm; MP=10cm
a) Tính BC và NP
b) Chứng minh tam giác ABC đồng dạng với tam giác NPM
a, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=5cm\)
Theo định lí Pytago tam giác MNP vuông tại N
\(NP=\sqrt{MP^2-MN^2}=6cm\)
b, Xét tam giác ABC và tam giác NPM có
^BAC = ^PNM = 900
\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{3}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)
Vậy tam giác ABC ~ tam giác NPM ( c.g.c )
Cho tam giác ABC có góc A=90 độ; AB=3cm; AC=4cm và tam giác MNP có N=90 độ; MN=8cm; MP=10cm
a) Tính BC và NP
b) Chứng minh tam giác ABC đồng dạng với tam giác NPM
a: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
\(NP=\sqrt{10^2-8^2}=6\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔNPM vuông tại N có
AB/NP=AC/NM
Do đó: ΔABC\(\sim\)ΔNPM
Cho tam giác ABC có góc A=90 độ; AB=3cm; AC=4cm và tam giác MNP có N=90 độ; MN=8cm; MP=10cm
a) Tính BC và NP
b) Chứng minh tam giác ABC đồng dạng với tam giác NPM
cho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBAcho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBA~ AbC, B tính độ dài BC và AH AbC, B tính độ dài BC và AH
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
Cho tam giác ABC có góc A=90 độ, AB=4, AC=6. Gọi H là hình chiếu của B tên AC
a) tính độ dài AH
b) tính độ dài trung tuyến AM của tam giác ABC
Lời giải:
a. Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{4^2+6^2}=2\sqrt{13}$ (cm)
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{4.6}{2\sqrt{13}}=\frac{12\sqrt{13}}{13}$ (cm)
b. Vì tam giác $ABC$ vuông tại $A$ nên $AM=\frac{BC}{2}=\sqrt{13}$ (cm)
Nếu $\widehat{A}=120^0$ thì giải như sau:
$\widehat{HAB}=180^0-\widehat{BAC}=180^0-120^0=60^0$
Xét tam giác $HAB$ vuông tại $H$:
$\frac{AH}{AB}=\cos \widehat{HAB}$
$AH=AB\cos \widehat{HAB}=4\cos 60^0=2$
b.
Áp dụng định lý Pitago:
$BH^2=AB^2-AH^2=4^2-2^2=12$
$CH=AH+AC=2+6=8$
$BC^2=BH^2+CH^2=12+8^2=76$
$AM^2=\frac{2(AB^2+AC^2)-BC^2}{4}=\frac{2(4^2+6^2)-76}{4}=7$
$\Rightarrow AM=\sqrt{7}$
cho tam giác abc có a=90 độ ab
Cho tam giác ABC có A=90°, a, √6/3, b, c theo thứ tự lập thành cấp số nhân. Tam giác ABC là tam giác có đặc điểm gì
cho tam giác abc có Â=90 độ và ab=ac ta có tam giác abc là tam giác ?
Do AB=AC(gt)
=> Tg ABC cân tại A
Mà \(\widehat{A}=90^o\)
=> Tg ABC vuông cân tại A
#H
Bạch Nhiên Hợp Lí ạ