Những câu hỏi liên quan
TN
Xem chi tiết
NM
2 tháng 12 2021 lúc 15:50

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

Bình luận (3)
HN
Xem chi tiết
HN
Xem chi tiết
CP
Xem chi tiết
NT
3 tháng 9 2021 lúc 22:28

a: Ta có: ΔABC vuông tại A

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔABC vuông tại A có 

\(AC=AB\cdot\tan30^0\)

\(=2\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

Bình luận (0)
H24
Xem chi tiết
NT
28 tháng 7 2021 lúc 0:39

Bài 5: 

a) Xét ΔABC vuông tại A có 

\(AC=AB\cdot\cot\widehat{C}\)

\(=21\cdot\cot40^0\)

\(\simeq25,03\left(cm\right)\)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)

hay \(BC\simeq32,67\left(cm\right)\)

Bình luận (0)
PH
Xem chi tiết
PH
20 tháng 2 2022 lúc 16:13

minh dang can gap

Bình luận (0)
NT
20 tháng 2 2022 lúc 22:32

Bài 1: 
AC=4cm

Xét ΔABC có AB<AC

nên \(\widehat{C}< \widehat{B}\)

Bài 2: 

BC=6cm

=>AB+AC=14cm

mà AB=AC

nên AB=AC=7cm

Xét ΔABC có AB=AC>BC

nên \(\widehat{B}=\widehat{C}>\widehat{A}\)

Bình luận (0)
HA
Xem chi tiết
NT
8 tháng 2 2021 lúc 19:30

1) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

2) Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

Bình luận (1)
LL
8 tháng 2 2021 lúc 20:05

Ta có: BC2=102=100

AB2+AC2=62+82=100

Vậy BC2=AB2+AC2

Xét ΔABC có:

 BC2=AB2+AC2

Nên ΔABC vuông tại A(Định lí Pytago đảo)

Ta có: ΔABC vuông tại A(gt)

Nên 

Bình luận (0)
H24
Xem chi tiết
H24
16 tháng 2 2022 lúc 15:42

Ta có:

\(AB^2+AC^2=8^2+6^2=64+36=100\left(cm\right)\)

\(BC^2=10^2=100\left(cm\right)\)

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A (định lý Pi-ta-go đảo)

Bình luận (0)
PT
16 tháng 2 2022 lúc 15:44

Áp dụng định lý Pytago đảo  ta có:

AB2+AC2=82+62=100

mà 102=100

⇒82+62=102hay AB2+AC2=BC2

vậy ABC là tam giác vuông tại A

Bình luận (0)
CS
16 tháng 2 2022 lúc 15:53

áp dụng định lý pitago ta có : 

ab^2+ac^2=8^2+6^2=100=10^2

=>bc=10cm 

=>tam giác abc vuông tại a

 

 

Bình luận (0)
NT
Xem chi tiết
NT
Xem chi tiết
BN
23 tháng 3 2016 lúc 20:20

Áp dụng định lý Py-ta-go đối với ▲MPQ vuông tại M ta có:

\(MQ^2=PQ^2-MP^2\)

\(\Rightarrow MQ=10^2-6^2=100-36=64\)

\(\Rightarrow MQ=8\left(cm\right)\)

Xét ▲ABC và ▲MPQ ta có :

\(\frac{AB}{MP}=\frac{AC}{MQ}=\frac{1}{2}\left(\frac{3}{6}=\frac{4}{8}\right)\)

<A=<M=90

Do đó hai tam giác đồng dạng

Bình luận (0)
CA
23 tháng 3 2016 lúc 20:32

- Đâu cần phiền phức vậy! Có hai góc A và M cùng =90 độ lập tỉ số 2 cặp cạnh đã cho độ dài => 2 tỉ số bằng nhau => Tam giác đồng dạng trường hợp c.g.c .

Bình luận (0)