H24

4. Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm. Kẻ đường cao AH và phân giác AD của tam giác ABC (H; D thuộc BC).

1) Tính độ dài các đoạn thẳng DB; DC

2) Tính độ dài các đoạn thẳng HD; AD

NT
23 tháng 9 2021 lúc 20:18

1: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{6}=\dfrac{CD}{8}\)

mà BD+CD=10cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{30}{7}cm;CD=\dfrac{40}{7}cm\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
NM
Xem chi tiết
PC
Xem chi tiết
NK
Xem chi tiết
MK
Xem chi tiết
DH
Xem chi tiết
TL
Xem chi tiết