Những câu hỏi liên quan
NQ
Xem chi tiết
NT
17 tháng 8 2023 lúc 19:32

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

Bình luận (1)
AD
Xem chi tiết
TT
Xem chi tiết
NT
11 tháng 5 2023 lúc 7:27

a: Xét ΔACE vuông tại C và ΔAKE vuông tạiK có

AE chung

góc CAE=góc KAE

=>ΔACE=ΔAKE

=>AC=AK và EC=EK

=>AE là trung trực của CK

b: Xét ΔABC vuông tại A có cosA=AC/AB

=>AC/AB=1/2

=>AB=2AC

Xét ΔEAB có góc EAB=góc EBA

nên ΔEAB cân tại E

=>EA=EB>AC

Bình luận (0)
LN
Xem chi tiết
NT
26 tháng 10 2021 lúc 20:46

\(AH=\dfrac{AB\cdot AC}{BC}=2.4\left(cm\right)\)

\(BH=\sqrt{3^2-2.4^2}=1.8\left(cm\right)\)

CH=BC-HB=5-1,8=3,2(cm)

Bình luận (1)
BT
Xem chi tiết
BT
26 tháng 3 2020 lúc 9:20

mọi ngouiwf trả lời câu này giúp mik vs

Bình luận (0)
 Khách vãng lai đã xóa
TS
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
AT
13 tháng 7 2021 lúc 9:37

a) Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{16^2+12^2}=20\left(cm\right)\)

Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.16}{20}=\dfrac{48}{5}\left(cm\right)\)

Ta có: \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{16^2}{20}=\dfrac{64}{5}\left(cm\right)\)

Ta có: \(sinB=\dfrac{AC}{BC}=\dfrac{12}{20}=\dfrac{3}{5}\Rightarrow\angle B\approx37\)

b) tam giác AHE vuông tại H có HN là đường cao \(\Rightarrow AN.AE=AH^2\)

tam giác ABC vuông tại A có AH là đường cao \(\Rightarrow AH^2=HB.HC\)

\(\Rightarrow AN.AE=HB.HC\)

c) tam giác AHB vuông tại H có HM là đường cao \(\Rightarrow AH^2=AM.AB\)

\(\Rightarrow AN.AE=AM.AB\Rightarrow\dfrac{AM}{AE}=\dfrac{AN}{AB}\)

Xét \(\Delta AMN\) và \(\Delta AEB:\) Ta có: \(\left\{{}\begin{matrix}\angle EABchung\\\dfrac{AM}{AE}=\dfrac{AN}{AB}\end{matrix}\right.\)

\(\Rightarrow\Delta AMN\sim\Delta AEB\left(c-g-c\right)\Rightarrow\dfrac{AE}{AM}=\dfrac{BE}{MN}\)

mà \(BE=3MN\Rightarrow\dfrac{BE}{MN}=3\Rightarrow\dfrac{AE}{AM}=3\Rightarrow AE=3AM\)

undefined

Bình luận (1)
NT
13 tháng 7 2021 lúc 13:35

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot20=16\cdot12=192\)

hay AH=9,6(cm)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow HB^2=16^2-9.6^2=163.84\)

hay HB=12,8(cm)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{20}=\dfrac{3}{5}\)

hay \(\widehat{B}\simeq37^0\)

Bình luận (0)
NT
13 tháng 7 2021 lúc 13:37

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(HB\cdot HC=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHE vuông tại H có HN là đường cao ứng với cạnh huyền AE, ta được:

\(AN\cdot AE=AH^2\)(2)

Từ (1) và (2) suy ra \(HB\cdot HC=AN\cdot AE\)

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 1 2022 lúc 20:07

\(\widehat{DBC}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)

mà \(\widehat{DCB}=30^0\)

nên \(\widehat{DBC}=\widehat{DCB}\)

hay ΔDBC cân tại D

Bình luận (0)