Những câu hỏi liên quan
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 0:49

Do các vectơ đều nằm trên đường thẳng AB nên các vectơ này đều cùng phương với nhau.

Dễ thấy:

Các vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {BC} \) cùng hướng (từ trái sang phải.)

Các vectơ \(\overrightarrow {BA} ,\overrightarrow {CA} ,\overrightarrow {CB} \) cùng hướng (từ phải sang trái.)

Do đó, các cặp vectơ cùng hướng là:

\(\overrightarrow {AB} \) và \(\overrightarrow {AC} \); \(\overrightarrow {AC} \) và \(\overrightarrow {BC} \); \(\overrightarrow {AB} \) và \(\overrightarrow {BC} \); \(\overrightarrow {BA} \) và \(\overrightarrow {CA} \);  \(\overrightarrow {BA} \) và \(\overrightarrow {CB} \);\(\overrightarrow {BA} \) và \(\overrightarrow {CB} \).

Các cặp vectơ ngược hướng là:

\(\overrightarrow {AB} \) và \(\overrightarrow {BA} \); \(\overrightarrow {AB} \) và \(\overrightarrow {CA} \); \(\overrightarrow {AB} \) và \(\overrightarrow {CB} \);

\(\overrightarrow {AC} \) và \(\overrightarrow {BA} \); \(\overrightarrow {AC} \) và \(\overrightarrow {CA} \); \(\overrightarrow {AC} \) và \(\overrightarrow {CB} \);

\(\overrightarrow {BC} \) và \(\overrightarrow {BA} \); \(\overrightarrow {BC} \) và \(\overrightarrow {CA} \); \(\overrightarrow {BC} \) và \(\overrightarrow {CB} \);

Bình luận (0)
SK
Xem chi tiết
QD
31 tháng 3 2017 lúc 17:06

Giải bài 2 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Thỏa mãn :

- Giá của 3 vector đều song song với mặt phẳng (P) nên chúng đồng phẳng

- Khi ba vectơ có giá của chúng cùng song song với một mặt phẳng

Bình luận (0)
SK
Xem chi tiết
NH
27 tháng 5 2017 lúc 8:07

Hình giải tích trong không gian

Bình luận (0)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 20:33

a) Ta có: \(\overrightarrow u  = ({x_1};{y_1}),\;\overrightarrow v  = ({x_2};{y_2}),\;\overrightarrow w  = ({x_3};{y_3}).\)

\(\begin{array}{l} \Rightarrow \overrightarrow v  + \overrightarrow w  = ({x_2};{y_2}) + ({x_3};{y_3}) = \left( {{x_2} + {x_3};{y_2} + {y_3}} \right)\\ \Rightarrow \overrightarrow u .\left( {\overrightarrow v  + \overrightarrow w } \right) = {x_1}.\left( {{x_2} + {x_3}} \right) + {y_1}.\left( {{y_2} + {y_3}} \right)\end{array}\)

Và: \(\;\overrightarrow u .\overrightarrow v  + \overrightarrow u .\overrightarrow w  = \left( {{x_1}.{x_2} + {y_1}.{y_2}} \right) + \left( {{x_1}.{x_3} + {y_1}.{y_3}} \right)\)\( = {x_1}.{x_2} + {y_1}.{y_2} + {x_1}.{x_3} + {y_1}.{y_3}.\)

b) Vì \({x_1}.{x_2} + {y_1}.{y_2} + {x_1}.{x_3} + {y_1}.{y_3}\)\( = \left( {{x_1}.{x_2} + {x_1}.{x_3}} \right) + \left( {{y_1}.{y_2} + {y_1}.{y_3}} \right)\)\( = {x_1}.\left( {{x_2} + {x_3}} \right) + {y_1}.\left( {{y_2} + {y_3}} \right)\)

Nên \(\overrightarrow u .\left( {\overrightarrow v  + \overrightarrow w } \right) = \;\overrightarrow u .\overrightarrow v  + \overrightarrow u .\overrightarrow w \)

c) Ta có: \(\overrightarrow u  = ({x_1};{y_1}),\;\overrightarrow v  = ({x_2};{y_2})\)

\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow u .\overrightarrow v  = {x_1}.{x_2} + {y_1}.{y_2}\\\overrightarrow v .\overrightarrow u  = {x_2}.{x_1} + {y_2}.{y_1}\end{array} \right.\)\( \Leftrightarrow \;\overrightarrow u .\overrightarrow v  = \overrightarrow v .\overrightarrow u \)

Bình luận (0)
QL
Xem chi tiết
HM
28 tháng 9 2023 lúc 23:49

a) Ta có vectơ \(\overrightarrow {OG} \) theo ba vectơ \(\overrightarrow {OA} \) , \(\overrightarrow {OB} \)và \(\overrightarrow {OC} \) là: \(\overrightarrow {OG}  = \frac{1}{3}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} } \right)\)

b) Do tọa độ ba điểm A , B và C là: \(A\left( {{x_A},{y_A}} \right),B\left( {{x_B},{y_B}} \right),C\left( {{x_C},{y_C}} \right)\) nên ta có:\(\overrightarrow {OA}  = \left( {{x_A},{y_A}} \right),\overrightarrow {OB}  = \left( {{x_B},{y_B}} \right),\overrightarrow {OC}  = \left( {{x_C},{y_C}} \right)\)

Vậy\(\overrightarrow {OG}  = \frac{1}{3}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} } \right) = \frac{1}{3}\left( {{x_A} + {x_B} + {x_C};{y_A} + {y_B} + {y_C}} \right) = \left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\)

Tọa độ điểm G chính là tọa độ của vectơ \(\overrightarrow {OG} \) nên tọa độ G  là \(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\)

Bình luận (0)
SK
Xem chi tiết
NH
27 tháng 5 2017 lúc 8:05

Hình giải tích trong không gian

Hình giải tích trong không gian

Bình luận (0)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 15:41

\(\overrightarrow {AB}  = \overrightarrow a \;\;\, \Rightarrow \left\{ \begin{array}{l}AB//\;a\\AB = a\end{array} \right.\) và \(\overrightarrow {A'B'}  = \overrightarrow a \;\;\, \Rightarrow \left\{ \begin{array}{l}A'B'\;//\;a\\A'B' = a\end{array} \right.\)

\( \Rightarrow \left\{ \begin{array}{l}AB//\;A'B'\\AB = A'B'\end{array} \right.\)

Tương tự, ta cũng suy ra \(\left\{ \begin{array}{l}BC//\;B'C'\\BC = B'C'\end{array} \right.\)

\( \Rightarrow \Delta ABC = \Delta A'B'C'\)(c-g-c)

\(\left\{ \begin{array}{l}AC//\;A'C'\\AC = A'C'\end{array} \right.\)

Dễ dàng suy ra  \(\overrightarrow {AC}  = \overrightarrow {A'C'} \).

Bình luận (0)
QL
Xem chi tiết
HM
25 tháng 9 2023 lúc 21:24

a) \(\overrightarrow {MN}  = 3\overrightarrow a \)có độ dài bằng 3 lần vectơ \(\overrightarrow a \), cùng hướng với vectơ \(\overrightarrow a \)

Suy ra, từ điểm M vẽ vectơ MN với độ dài là 6 ô vuông và có hướng từ trái sang phải

\(\overrightarrow {MP}  =  - 3\overrightarrow b \)có độ dài bằng 3 lần vectơ \( - \overrightarrow b \), ngược hướng với vectơ \(\overrightarrow b \)

Suy ra, từ điểm M vẽ vectơ MP với độ dài là 3 đường chéo ô vuông và có hướng từ trên xuống dưới chếch sang trái

b) Hình vuông với cạnh bằng 1 thì ta tính được đường chéo có độ dài là \(\sqrt 2 \); \(\left| {\overrightarrow b } \right| = \sqrt 2 \) . Suy ra:

\(\left| {3\overrightarrow b } \right| = 3\left| {\overrightarrow b } \right| = 3\sqrt 2 \); \(\left| { - 3\overrightarrow b } \right| = 3\left| {\overrightarrow { - b} } \right| = 3\sqrt 2 \); \(\left| {2\overrightarrow a  + 2\overrightarrow b } \right| = \left| {2\left( {\overrightarrow a  + \overrightarrow b } \right)} \right| = 2\left| {\overrightarrow a  + \overrightarrow b } \right|\)

Từ điểm cuối của vectơ \(\overrightarrow a \) vẽ một vectơ bằng vectơ \(\overrightarrow b \) ta có \(\overrightarrow c  = \overrightarrow a  + \overrightarrow b \)

Áp dụng định lý cosin ta tính được độ dài của vectơ \(\overrightarrow c \)là \(\left| {\overrightarrow c } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \left( {\widehat {\overrightarrow a ,\overrightarrow b }} \right)}  = \sqrt {{2^2} + {{\sqrt 2 }^2} - 2.2.\sqrt 2 .\cos \left( {135^\circ } \right)}  = \sqrt {10} \)

\( \Rightarrow \left| {2\overrightarrow a  + 2\overrightarrow b } \right| = 2\left| {\overrightarrow a  + \overrightarrow b } \right| = 2\left| {\overrightarrow c } \right| = 2\sqrt {10} \)

Bình luận (0)
ND
Xem chi tiết
DN
10 tháng 1 2017 lúc 20:55

\(3\overrightarrow{a}=\left(0;3\right)\)

\(2\overrightarrow{b}=\left(-2;4\right)\)

\(-4\overrightarrow{c}\left(12;8\right)\)

=> \(\left\{\begin{matrix}u=0+3+12=15\\u=3+4+8=15\end{matrix}\right.\)

=>U(15;15)

Bình luận (0)