a/3=4b/5; 10 b/3=5c/2 và a+b+c=142
Cho: a-4b=5 ; a.b=\(-\dfrac{3}{2}\)
a) A=16ab2-4a2b
b) B= a2+16b2
c) D= a+4b
\(\cdot a-4b=5\Leftrightarrow\left(a-4b\right)^2=a^2-8ab+16b^2=25\Leftrightarrow a^2+16b^2=25+8\cdot\left(-\dfrac{3}{2}\right)=13\\ \cdot a-4b=5\Leftrightarrow4b-a=-5\)
\(a,A=ab\left(4b-a\right)=-\dfrac{3}{2}\cdot\left(-5\right)=\dfrac{15}{2}\)
\(b,B=a^2+16b^2=13\left(cm.trên\right)\)
\(c,D=a+4b\)
Ta có \(\left(a+4b\right)^2=a^2+8ab+16b^2=13+8\cdot\left(-\dfrac{3}{2}\right)=1\)
\(\Rightarrow D=a+4b=1\)
Tìm a và b biết
a) |3-2a|+|4b+5|=0
b) |a+2b| + |4b-3|=0
a,2/5+3/4
b,2/3-3/8
c,3/7x4/5
d,2/5:2/3
a) 2/5 + 3/4 = 23/20
b) 2/3 - 3/8 = 7/24
c) 3/7 x 4/5 = 12/35
d) 2/5 : 2/3 = 3/5
\(\dfrac{2}{5}+\dfrac{3}{4}=\dfrac{8}{20}+\dfrac{15}{20}=\dfrac{22}{20}=\dfrac{11}{10}\)
\(\dfrac{2}{3}-\dfrac{3}{8}=\dfrac{16}{24}-\dfrac{9}{24}=\dfrac{7}{24}\)
\(\dfrac{3}{7}\times\dfrac{4}{5}=\dfrac{12}{35}\)
\(\dfrac{2}{5}:\dfrac{2}{3}=\dfrac{3}{5}\)
\(\dfrac{2}{5}+\dfrac{3}{4}=\dfrac{8}{20}+\dfrac{15}{20}=\dfrac{23}{20}\)
\(\dfrac{2}{3}-\dfrac{3}{8}=\dfrac{16}{24}-\dfrac{9}{24}=\dfrac{7}{24}\)
\(\dfrac{3}{7}x\dfrac{4}{5}=\dfrac{12}{35}\)
\(\dfrac{2}{5}:\dfrac{2}{3}=\dfrac{2}{5}x\dfrac{3}{2}=\dfrac{3}{5}\)
a) Cho a>b C/m 5a-3>5b-3
b) Cho a>bC/m 3-4a<3-4b
c) Cho a<b So sánh 5-2a và 5-2b
d) Cho 3-4a>3-4b So sánh a và b
GIÚP MÌNH VỚI MÌNH TICK CHO
Tìm x
a) x : 3/4 =4
b)x - 2/5 = 4/5
a. 2/5 + 5/7 - 3/4
b. 8/9 : 7/13 x 9/5
Phân tích đa thức sau thành nhân tử a) -16a^4b^6 - 24a^5b^5 - 9a^6b^4
b) x^3 - 6x^2y + 12xy^2 - 8x^3
c) x^3 + 3/2x^2 + 3/4x + 1/8
Lời giải:
a.
\(-16a^4b^6-24a^5b^5-9a^6b^4=-[(4a^2b^3)^2+2.(4a^2b^3).(3a^3b^2)+(3a^3b^2)^2]\)
\(=-(4a^2b^3+3a^3b^2)^2=-[a^2b^2(4b+3a)]^2\)
\(=-a^4b^4(3a+4b)^2\)
b.
$x^3-6x^2y+12xy^2-8x^3$
$=x^3-3.x^2.2y+3.x(2y)^2-(2y)^3=(x-2y)^3$
c.
$x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}$
$=x^3+3.x^2.\frac{1}{2}+3.x.\frac{1}{2^2}+(\frac{1}{2})^3$
$=(x+\frac{1}{2})^3$
a) Ta có: \(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)
\(=-a^4b^4\cdot\left(4b+3a\right)^2\)
b) Ta có: \(x^3-6x^2y+12xy^2-8y^3\)
\(=x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(x-2y\right)^3\)
c) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}\)
\(=x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)
\(=\left(x+\dfrac{1}{2}\right)^3\)
Cho a<b. Chứng tỏ
a) 3a-5<3b-5 b) -8a-3>-8b-3
c) 4a-7<4b+9
a)
`a<b`
`<=>3a<3b`
`<=>3a-5<3b-5`
b)
`a<b`
`<=>-8a> -8b`
`<=>-8a-3> -8b-3`
c)
`a<b`
`<=>4a<4b`
`<=>4a+9<4b+9`
mà `4a-7<4a+9`
`<=>4a-7<4b+9`
a) 2 |x-1| 4
b) |2x-3|-x=5
b) /2x-3/-x=5
+) 2x-3>0⇔x>\(\dfrac{3}{2}\)
2x-3-x=5
⇔2x-x=5+3
⇔x=8
+) 2x-3<0⇔x<\(\dfrac{3}{2}\)
-(2x-3)-x=5
⇔-2x+3-x=5
⇔-2x-x=5-3
⇔-3x=2
⇔x=\(\dfrac{-2}{3}\)
S={8,\(\dfrac{-2}{3}\)}