cho pt; 1-sin2x+cos2x-2mcosx=0
tìm m để pt có 2 nghiệm thuộc (-π;π)
Cho PT: \(x^2-2mx+3m-4=0\)
a, Tìm m để PT đã cho có nghiệm là 2
b, Tìm m để PT đã cho không có nghiệm là 3
c, Tìm m để PT đã cho có 2 nghiệm trái dấu
d, Tìm m để PT đã cho có 2 nghiệm dương
a: Khi x=2 thì pt sẽlà 2^2-4m+3m-4=0
=>-m=0
=>m=0
c: Để PT có hai nghiệm tráo dấu thì 3m-4<0
=>m<4/3
d: Δ=(-2m)^2-4(3m-4)
=4m^2-12m+16
=(2m-3)^2+7>=7
=>Phương trình luôn có hai nghiệm pb
Để PT có 2 nghiệm dương thì 2m>0 và 3m-4>0
=>m>4/3
Bài 1: Cho pt x2 + 13x -1 = 0 (1). Không giải pt, hãy lập một pt bậc hai có các nghiệm y1, y2 lớn hơn nghiệm của pt (1) là 2.
Bài 2: Cho pt x2 - 5x + 6 = 0 (1). Không giải pt, hãy lập pt bậc hai có các nghiệm y1 và y2 là:
a/ Số đối các nghiệm của pt (1).
b/ Nghịch đảo các nghiệm của pt (1).
2:
a: y1+y2=-(x1+x2)=-5
y1*y2=(-x1)(-x2)=x1x2=6
Phương trình cần tìm có dạng là;
x^2+5x+6=0
b: y1+y2=1/x1+1/x2=(x1+x2)/x1x2=5/6
y1*y2=1/x1*1/x2=1/x1x2=1/6
Phương trình cần tìm là:
a^2-5/6a+1/6=0
câu 1 cho pt mx-4=-8x+3m
tìm m để pt có nghiệm x=-1
câu 2 cho pt m(x-5)=18+3mtìm m để pt có nghiệm x=-1Câu 1:
Thay x=-1 vào pt, ta được:
-m-4=-8*(-1)+3m
=>3m+8=-m-4
=>4m=-12
=>m=-3
Câu 2:
khi x=-1 thì pt sẽ là:
m(-1-5)=18+3m
=>3m+18=-6m
=>9m=-18
=>m=-2
b1 : cho hệ pt (m-1)x - my = 3m-1
2x-y =m+5
a) giải hệ pt khi m = 2
b) tìm m để hệ pt có nghiệm duy nhất sao cho \(x^2 -y^2=4 \)
b2 : cho hệ pt mx + y = 1
x + my = m + 1
với gtrị nào của m thì hệ pt có nghiệm duy nhất
với gtrị nào của m thì hệ pt có vô số nghiệm
với gtrị nào của m thì hệ pt vô nghiệm
Thay m=2 vào HPT ta có:
\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Vậy HPT có nghiemj (x;y) = (3;-11)
Cho pt :m(x+1)-2x = m2+m-4.Tìm m sao cho:
a, Pt nhận 1 làm nghiệm
b, Pt có nghiệm
c, Pt vô nghiệm
Lời giải:
PT $\Leftrightarrow x(m-2)=m^2-4$
a) Để pt nhận $1$ là nghiệm thì $1(m-2)=m^2-4$
$\Leftrightarrow m-2=m^2-4=(m-2)(m+2)$
$\Leftrightarrow (m-2)(m+2-1)=0$
$\Leftrightarrow (m-2)(m+1)=0\Rightarrow m=2$ hoặc $m=-1$
b) Để pt có nghiệm thì:
\(\left[\begin{matrix} m-2\neq 0\\ m-2=m^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m\neq 2\\ m=2\end{matrix}\right.\) hay $m\in\mathbb{R}$
Vậy pt có nghiệm với mọi $m\in\mathbb{R}$
c) Kết quả phần b suy ra không tồn tại giá trị của $m$ để pt vô nghiệm.
Cho pt 3x2 -2(x2 +4x )+3x +2=0
a) thu gọn pt đã cho về dạng pt bac 2
\(3x^2-2\left(x^2+4x\right)+3x+2=0\)
\(\Leftrightarrow3x^2-2x^2-8x+3x+2=0\)
\(\Leftrightarrow x^2-5x+2=0\)
Cho pt 3x^2 -2(x^2+ 4x)+3x +2 =0
a) thu gọn pt đã cho về dạng pt bac 2
Ta có: 3x2 - 2(x2 + 4x) + 3x + 2 = 0
=> 3x2 - 2x2 - 8x + 3x + 2 = 0
=> x2 - 5x + 2 =0
\(3x^2-2\left(x^2+4x\right)+3x+2=0\)
,<=> \(3x^2-2x^2-8x+3x+2=0\)
<=> \(x^2-5x+2=0\)
cho pt x2 - 2mx - 2m - 6 =0
a) giải pt khi m=1
b) xác định m để pt có hai nghiệm sao cho x12 + x22 nhỏ nhất
a)
Thế m = 1 vào PT được: \(x^2-2.1.x-2.1-6=0\)
\(\Leftrightarrow m^2-2x-8=0\\ \Delta=4+32=36\\ \left\{{}\begin{matrix}x_1=4\\x_2=-2\end{matrix}\right.\)
b)
Theo vi ét có; \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-2m-6\end{matrix}\right.\)
\(\Delta'=m^2+2m+6=m^2+2m+1+5=\left(m+1\right)^2+5>0\)
PT có 2 nghiệm phân biệt với mọi m.
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4m^2+4m+12\\ =\left(2m\right)^2+2.2m.1+1+11\\ =\left(2m+1\right)^2+11\ge11\)
GTNN của \(x_1^2+x_2^2\) đạt 11 khi \(m=-\dfrac{1}{2}\)
Cho pt bậc 2 ẩn x: x2 + 3x + m = 0. a) Giải pt (1) khi m = 0; m = -4. b) Tìm m để pt (1) vô nghiệm. c) Tìm m để pt (1) có một nghiệm là -1. Tìm nghiệm kia. d) Cho x1, x2 là 2 nghiệm của pt (1). Không giải pt, hãy tìm giá trị của m để: 1/ x1^2 + x2^2=34 2/ x1 - x2=6 3/ x1=2x2 4/ 3x1+2x2=20 5/ x1^2-x2^2=30.
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
cho pt 5x2-3x+m-1=0
a) giải pt vs m=-7
b) tìm m để pt có 1 nghiệm x1=3/2
c) tìm m để pt có 2 nghiệm phân biệt
d) giairvaf biện luận pt theo m
a.
⇔ \(5x^2-3x+\left(-7\right)-1=0\)
⇔ \(5x^2-3x-8=0\)
Δ=\(b^2-4ac\) \(=\left(-3\right)^2-4.5.\left(-8\right)=169\)>0
Vì Δ>0 nên pt có 2 nghiệm phân biệt:
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{169}}{2.5}=\dfrac{8}{5}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{3-\sqrt{169}}{2.5}=-1\)