MH

cho pt x2 - 2mx - 2m - 6 =0
a) giải pt khi m=1
b) xác định m để pt có hai nghiệm sao cho x12 + x22 nhỏ nhất

H24
8 tháng 8 2023 lúc 22:06

a)

Thế m = 1 vào PT được: \(x^2-2.1.x-2.1-6=0\)

\(\Leftrightarrow m^2-2x-8=0\\ \Delta=4+32=36\\ \left\{{}\begin{matrix}x_1=4\\x_2=-2\end{matrix}\right.\)

b)

Theo vi ét có; \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-2m-6\end{matrix}\right.\)

\(\Delta'=m^2+2m+6=m^2+2m+1+5=\left(m+1\right)^2+5>0\)

PT có 2 nghiệm phân biệt với mọi m.

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4m^2+4m+12\\ =\left(2m\right)^2+2.2m.1+1+11\\ =\left(2m+1\right)^2+11\ge11\)

GTNN của \(x_1^2+x_2^2\) đạt 11 khi \(m=-\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
MH
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
MH
Xem chi tiết
NH
Xem chi tiết
PU
Xem chi tiết
LA
Xem chi tiết
PU
Xem chi tiết
MH
Xem chi tiết