Những câu hỏi liên quan
TN
Xem chi tiết
PB
Xem chi tiết
CT
12 tháng 7 2019 lúc 8:17

Chọn A

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 6 2019 lúc 7:44

Chọn A

Bình luận (0)
HN
Xem chi tiết
H24
16 tháng 2 2023 lúc 16:37

Bình luận (0)
NN
Xem chi tiết
VT
Xem chi tiết
IS
5 tháng 4 2020 lúc 20:44

cách làm thôi nha

GỌi D là gia điểm của AM zới đường tròn (O)

CM các tam giác DBI . DBM cân 

=> DI=DM

DO đó OD là đường trung bình của tam giác MIK

=> KM=2OD=2R

Zậy M thuộc đường tròn (K;2R)

tương tự đối zới các điểm N , P

Bình luận (0)
 Khách vãng lai đã xóa
GN
Xem chi tiết
NT
Xem chi tiết
ND
14 tháng 1 2019 lúc 19:11

A B C L' K O J E D I F L

Gọi I là tâm nội tiếp \(\Delta\)ABC, khi đó 3 điểm C,I,K  thẳng hàng. Gọi đường tròn ngoại tiếp \(\Delta\)AIE cắt tia CI tại điểm thứ hai F.

Xét \(\Delta\)CKA và \(\Delta\)CIB có: ^ACK = ^BCI (=^ACB/2); ^CAK = ^CBI (=^ABC/2) => \(\Delta\)CKA ~ \(\Delta\)CIB (g.g)

Suy ra: \(\frac{CK}{CI}=\frac{CA}{CB}\). Mà \(\frac{CA}{CB}=\frac{CD}{CA}\)(\(\Delta\)CAD ~ \(\Delta\)CBA) nên \(\frac{CK}{CI}=\frac{CD}{CA}\Rightarrow\frac{CK}{CD}=\frac{CI}{CA}\)

Lại có: CEA và CIF là 2 cát tuyến của (AIE) nên \(\frac{CI}{CA}=\frac{CE}{CF}\). Từ đó: \(\frac{CK}{CD}=\frac{CE}{CF}\)

Suy ra: \(\Delta\)CEK ~ \(\Delta\)CFD (c.g.c) => ^CEK = ^CFD. Nếu ta gọi 2 tia FD và EK cắt nhau ở L' thì ^CEL' = ^CFL'

=> Tứ giác CL'FE nội tiếp => ^ECF = ^EL'F => ^KCD = ^KL'D => Tứ giác CKDL' nội tiếp 

Áp dụng phương tích đường tròn có: FK.FC=FD.FL'   (1)

Cũng từ \(\Delta\)CKA ~ \(\Delta\)CIB (cmt) => ^BIF = ^AKI hay ^AKF = ^EIC => ^AKF = ^CAF

=> \(\Delta\)AFK ~ \(\Delta\)CFA (g.g)  => FA2 = FK.FC        (2)

Từ (1) và (2) => FA2 = FD.FL' => \(\Delta\)FDA ~ \(\Delta\)FAL' (c.g.c)

=> ^FL'A = ^FAD = ^DAC - ^FAC = ^ABC - ^FKA = ^ABC - (^KAC + ^ACK) = ^ABC/2 - ^ACB/2

Do đó: ^AL'E = ^FL'A + ^FL'E = ^ABC/2 - ^ACB/2 + ^ACB/2 = ^ABC/2 = ^ABE => Tứ giác ABL'E nội tiếp

Hay tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L' => L' trùng L

Từ đó dễ có: ^BLC = ^ABC/2 + ^ACB + ^ABC/2 + ^BAC/2 = ^ABC + ^ACB + ^BAC/2 = 1800 - ^BAC/2

Vậy thì tâm của đường tròn (BLC) nằm tại điểm chính giữa cung BC chứa A của (O) (đpcm).

Bình luận (0)
2Q
Xem chi tiết
NT
24 tháng 3 2023 lúc 22:21

Bổ sung: ΔABC cân tại A

ΔABC cân tại A

=>AO đi qua trug diểm I của EF

Vẽ IK vuông góc AB tại K, gọi H và G lần lượt là giao của OA với BC và(O)

Vì OE vuông góc AB, IK vuông goc AB, GB vuông góc AB

=>OE//IK//GB

ΔABG có IK//GB

nên IK/BG=AI/AG

=>IK=AI*BG/AG

ΔABH có EI//BH

ΔABE có OE//BG

=>IH/AH=BE/BA=OG/AG và AE/AB=AI/AH

=>IH=AH*OE/AE

ΔABG có OE//BG

nên AB/AE=BG/OE

AH/AI=AB/AE=BG/OE

=>AH*OE=AI*BG 

=>AH*OG=AI*BG

=>IK=IH

=>ĐPCM

Bình luận (1)
GL
Xem chi tiết