Cho a,b,c là các số dương t/m a+b+c=3.Tìm GTNN của biểu thức ; \(P=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)
Cho a,b,c là các số dương t/m a+b+c=3.Tìm GTNN của biểu thức \(P=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\)\(\frac{c}{1+a^2}\)
Ta có: \(\frac{a}{1+b^2}=\frac{a+ab^2-ab^2}{1+b^2}=\frac{a\left(1+b^2\right)}{1+b^2}-\frac{ab^2}{1+b^2}\)
\(=a-\frac{ab^2}{1+b^2}\)
Áp dụng bđt Cô-si ta có: \(1+b^2\ge2\sqrt{b^2}=2b\)
\(\Rightarrow\frac{ab^2}{1+b^2}\le\frac{ab^2}{2b}=\frac{ab}{2}\)
\(\Rightarrow a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)
\(\Rightarrow\frac{a}{1+b^2}\ge a-\frac{ab}{2}\)
C/m tương tự \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\)
\(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng từng vế của 3 bđt trên lại ta đc
\(VT\ge a+b+c-\frac{ab+bc+ca}{2}=3-\frac{ab+bc+ca}{2}\)
Ta có bđt: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)(1) với x , y , z dương
Thật vậy \(\left(1\right)\Leftrightarrow\left(x+y+z\right)^2\ge3xy+3yz+3zx\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx\ge3xy+3yz+3zx\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)(Luôn đúng)
Áp dụng bđt (1) ta đc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)
Khi đó: \(VT\ge3-\frac{3}{2}=\frac{3}{2}\)
Dấu "=" <=> a = b = c = 1
Vậy .............
Cho a, b, c là các số thực dương thay đổi thỏa mãn điều kiện: a+b+c=1.
Tìm GTNN của biểu thức:
M=14(\(a^2\)+\(b^2\)+\(c^2\))+\(\dfrac{ab+ac+bc}{a^2b+b^2c+c^2a}\)
Theo đề ra, ta có:
\(a^2+b^2+c^2\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)
Theo BĐT Cô-si:
\(\left\{{}\begin{matrix}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)
Do vậy \(M\ge14\left(a^2+b^2+c^2\right)+\dfrac{3\left(ab+bc+ac\right)}{a^2+b^2+c^2}\)
Ta đặt \(a^2+b^2+c^2=k\)
Luôn có \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)
Vì thế nên \(k\ge\dfrac{1}{3}\)
Khi đấy:
\(M\ge14k+\dfrac{3\left(1-k\right)}{2k}=\dfrac{k}{2}+\dfrac{27k}{2}+\dfrac{3}{2k}-\dfrac{3}{2}\ge\dfrac{1}{3}.\dfrac{1}{2}+2\sqrt{\dfrac{27k}{2}.\dfrac{3}{2k}}-\dfrac{3}{2}=\dfrac{23}{3}\)
\(\Rightarrow Min_M=\dfrac{23}{3}\Leftrightarrow a=b=c=\dfrac{1}{3}\).
cho a,b,c là số thực dương thỏa mãn a+b+c=3. tìm GTNN của biểu thức P=a/b+b/c+c/a+3abc/ab+bc+ca
cho a, b, c là các số dương thỏa mãn a+b+c>=6. Tìm gtnn của biểu thức sau: P = 2a+4b+6c+4/a+12/b+20/c
\(P=\left(a+b+c\right)+\left(a+\frac{4}{a}\right)+\left(3b+\frac{12}{b}\right)+\left(5c+\frac{20}{c}\right)\)
Theo BĐT AM-GM và gt ta có: \(P\ge6+4+12+20=42\).
Đẳng thức xảy ra khi \(a=b=c=2\)
Vậy \(minP=42\)
Cho các số thực a,b,c dương thỏa mãn a+b+c=5 Tìm GTNN CỦA BIỂU THỨC 2A+2AB+ABC
Biểu thức này không tồn tại cả GTLN lẫn GTNN (chỉ tồn tại nếu a;b;c không âm)
cho a,b,b là các số dương và a2+b2+c2=1. Tìm GTNN của biểu thức:
P=\(\dfrac{bc}{a}\)+\(\dfrac{ac}{b}\)+\(\dfrac{ab}{c}\)
Lời giải:
$P=\frac{a^2b^2+b^2c^2+c^2a^2}{abc}$
Áp dụng BĐT AM-GM, dạng $(x+y+z)^2\geq 3(xy+yz+xz)$ ta có:
$(a^2b^2+b^2c^2+c^2a^2)^2\geq 3(a^2b^4c^2+a^4b^2c^2+a^2b^2c^4)$
$=3a^2b^2c^2(a^2+b^2+c^2)=3a^2b^2c^2$
$\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq \sqrt{3}abc$
$\Rightarrow P=\frac{a^2b^2+b^2c^2+c^2a^2}{abc}\geq \sqrt{3}$
Vậy $P_{\min}=\sqrt{3}$. Giá trị này đạt tại $a=b=c=\frac{1}{\sqrt{3}}$
Cho các số thực dương a, b, c thỏa mãn a ≥ b + c. Tìm GTNN của biểu thức:
P = \(\dfrac{a}{b+c}+\dfrac{b}{a+2c}+\dfrac{c}{a+2b}\)
Cho các số dương a,b,c. Tìm GTNN của biểu thức:
\(M=\frac{1}{a+\sqrt{ab}+\sqrt[3]{abc}}-\frac{3}{\sqrt{a+b+c}}+2017\)
Vì a, b, c dương nên ta có:
\(a+\sqrt{ab}+\sqrt[3]{abc}=a+\sqrt{\frac{1}{2}a2b}+\sqrt[3]{\frac{1}{4}ab4c}\le a+\frac{1}{4}a+b+\frac{1}{12}a+\frac{1}{3}b+\frac{4}{3}c=\frac{4}{3}\left(a+b+c\right)\)
(Bất đẳng thức Cô si)
Khi đó:
\(M\ge\frac{3}{4\left(a+b+c\right)}-\frac{3}{\sqrt{a+b+c}}+2017=3\left(\frac{1}{4\left(a+b+c\right)}-\frac{2}{\sqrt{a+b+c}}+1\right)+2014\)
\(=3\left(\frac{1}{2\sqrt{a+b+c}}-1\right)^2+2014\ge2014\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{4}a=b=4c\\\frac{1}{2\sqrt{a+b+c}}=1\end{matrix}\right.\)
Vậy GTNN của M bằng 2014
Cho a,b,c là các số dương và a+b+c=1.Tìm GTNN của biểu thức:A=a3+b3+c3.
Công Chúa Giá Băng trên mạng ko có à