Violympic toán 8

KB

Cho a,b,c là các số dương t/m a+b+c=3.Tìm GTNN của biểu thức ; \(P=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)

NL
25 tháng 2 2020 lúc 21:19

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Làm tương tự và cộng lại

\(\Rightarrow P\ge a+b+c-\frac{1}{2}\left(ab+bc+ca\right)\ge a+b+c-\frac{1}{6}\left(a+b+c\right)^2=3-\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
HP
25 tháng 2 2020 lúc 21:41

Ta có : \(\frac{a}{1+b^2}=\frac{a+ab^2-ab^2}{1+b^2}=\frac{a\left(1+b^2\right)}{1+b^2}-\frac{ab^2}{1+b^2}\)

\(=a-\frac{ab^2}{1+b^2}\)

Áp dụng bất đẳng thức Cô - si ta có : \(1+b^2\ge2\sqrt{b^2}=2b\)

\(\Rightarrow\frac{ab^2}{1+b^2}\le\frac{ab^2}{2b}=\frac{ab}{2}\)

\(\Rightarrow a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)

\(\Rightarrow\frac{a}{1+b^2}\ge a-\frac{ab}{2}\)

Chứng minh tương tự ta được :

\(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\)

\(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Cộng theo từng vế của 3 BĐT trên ta được

\(VT\ge a+b+c-\frac{ab+bc+ca}{2}=3-\frac{ab+bc+ca}{2}\)

Ta có BĐT : \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\left(1\right)\)với x , y , z dương

Thật vậy \(\left(1\right)\Leftrightarrow\left(x+y+z\right)^2\ge3xy+3yz+3zx\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx\ge3xy+3yz+3zx\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

Áp dụng BĐT (1) ta được : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)

Khi đó : \(VT\ge3-\frac{3}{2}=\frac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt !!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NA
Xem chi tiết
TT
Xem chi tiết
NA
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
TA
Xem chi tiết
NH
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết