biết:
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(CMR:\frac{a}{b}=\frac{c}{d};\frac{a}{b}=\frac{d}{c}\)
1.Biết : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)với a ,b ,c ,d khác 0
CMR: \(\frac{a}{b}=\frac{c}{d}ho\text{ặc}\frac{a}{b}=\frac{b}{c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
a^2+b^2/c^2+d^2 = a^2/c^2 = b^2 / d^2
=>a/c = b/d
=>a/b = c/d
Chúc bạn học tốt nha
dat k ; ta co a= bk , c=dk , roi tu thay vao ma rut gon nhe
Ta có \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}\)
\(\Rightarrow\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
\(\Rightarrow\frac{a-b}{c-d}=\frac{a+b}{c+d}=\frac{a-b-a-b}{c-d-c-d}=\frac{a-b+a+b}{c-d+c+d}\)
\(\Rightarrow\frac{2b}{2d}=\frac{2a}{2c}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Biết \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)với a,b,c,d\(\ne\)0 .CMR: \(\frac{a}{b}=\frac{c}{d}\)và\(\frac{a}{b}=\frac{d}{c}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Rightarrow\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd+b^2cd-abc^2-abc^2=0\)
\(\Leftrightarrow a^2cd-abc^2+b^2cd-abc^2=0\)
\(\Leftrightarrow ac\left(ad-bc\right)+bd\left(bc-ad\right)=0\)
\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)
\(\Leftrightarrow\left(ad-bc\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}ad-bc=0\\ac-bd=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}ad=bc\\ac=bd\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\Rightarrowđpcm\)
4.Biết : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)Cmr:
\(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{a}{b}=\frac{d}{c}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
=> \(\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd+b^2cd-abc^2-abd^2=0\)
\(\Leftrightarrow a^2cd-abc^2+b^2cd-abd^2=0\)
\(\Leftrightarrow ac\left(ad-bc\right)+bd\left(bc-ad\right)=0\)
\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)
\(\Leftrightarrow\left(ad-bc\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}ad-bc=0\\ac-bd=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}ad=bc\\ac=bd\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\) (DPCM)
CMR nếu \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)(a,b,c,d khác 0). CMR \(\frac{a}{b}=\frac{c}{d}\)hoặc \(\frac{a}{b}=\frac{d}{c}\)
em gửi bài qua fb của thầy nhé thầy HD giải cho, tìm fb của thầy qua sđt: 0975705122
Ta có :
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\)( 1 )
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)
TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{c}\)( 3 )
TH2 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\)( 4 )
Từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\)hay \(\frac{a}{b}=\frac{c}{d}\)
TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2b}{2c}=\frac{b}{c}\)( 5 )
\(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2a}{2d}=\frac{a}{d}\)( 6 )
Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\)hay \(\frac{a}{b}=\frac{d}{c}\)
Vậy nếu \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)thì \(\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)
Biết \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) với a,b,c,d \(\ne\)0.CMR \(\frac{a}{b}=\frac{c}{d}\)hoặc \(\frac{a}{b}=\frac{d}{c}\)
Cho \(\frac{a}{b}=\frac{c}{d}\). CMR:
a) \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
b) \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
a) áp dụng tính chất của dãy tỉ số bằng nhau ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}\)
Do \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)=> đpcm
b) áp dụng tính chất của dãy tỉ số bằng nhau ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\left(\frac{a-c}{b-d}\right)^2\)=> đpcm
Cho : \(\frac{a}{b}=\frac{c}{d}CMR:\)\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}v\text{à}\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2=\frac{ab}{cd}\)
Vậy \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)và \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Cho a,b,c,d>0, ab+bc+cd+da=3. CMR \(\frac{a}{b^2+c^2+d^2}+\frac{b}{c^2+d^2+a^2}+\frac{c}{d^2+a^2+b^2}+\frac{d}{a^2+b^2+c^2}>\frac{4}{a+b+c+d}\)
cho \(\frac{a}{b}< \frac{c}{d}\). CMR\(\frac{a}{b}< \frac{ab+cd}{b^2+d^2}< \frac{c}{d}\)