HM

biết:

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)


\(CMR:\frac{a}{b}=\frac{c}{d};\frac{a}{b}=\frac{d}{c}\)

ST
20 tháng 10 2018 lúc 16:30

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\Rightarrow\left(a^2+b^2\right)cd=\left(c^2+d^2\right)ab\)

=>\(a^2cd+b^2cd=c^2ab+d^2ab\)

=>\(a^2cd+b^2cd-c^2ab-d^2ab=0\)

=>\(ac\left(ad-bc\right)+bd\left(bc-ad\right)=0\)

=>\(ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)

=>\(\left(ac-bd\right)\left(ad-bc\right)=0\)

=>\(\orbr{\begin{cases}ac-bd=0\\ad-bc=0\end{cases}\Rightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}\Rightarrow}\orbr{\begin{cases}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\end{cases}}}\) (đpcm)

Bình luận (0)