Những câu hỏi liên quan
LN
Xem chi tiết
TT
21 tháng 11 2017 lúc 13:52

Nhẩm nghiệm ta thấy: a+b+c=3 \(\Rightarrow\)a=b=c=1    (1)

Áp dụng bất đẳng thức AM-GM, ta có:

\(x^5+y^5+z^5+\frac{1}{x}+\frac{1}{y}+\frac{1}{x}\ge6\sqrt[6]{\frac{x^5y^5z^5}{xyz}}=6\sqrt[6]{x^4y^4z^4}\)

Hay: \(6\sqrt[6]{x^4y^4z^4}\ge6\)

\(\Leftrightarrow\sqrt[6]{x^4y^4z^4}=1\Leftrightarrow x^4y^4z^4=1\Leftrightarrow xyz=1\)   (2)

Từ (1) và (2) suy ra: x=y=z=1

Bình luận (0)
BL
Xem chi tiết
AH
5 tháng 1 2020 lúc 1:14

Vì đã khuya nên não cũng không còn hoạt động tốt nữa, mình làm bài 1 thôi nhé.

Bài 1:

a)

\(2\text{VT}=\sum \frac{2bc}{a^2+2bc}=\sum (1-\frac{a^2}{a^2+2bc})=3-\sum \frac{a^2}{a^2+2bc}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\sum \frac{a^2}{a^2+2bc}\geq \frac{(a+b+c)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)

Do đó: \(2\text{VT}\leq 3-1\Rightarrow \text{VT}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

b)

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\sum \frac{ab^2}{a^2+2b^2+c^2}=\sum \frac{ab^2}{\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+b^2}\leq \sum \frac{1}{16}\left(\frac{9ab^2}{a^2+b^2+c^2}+\frac{ab^2}{b^2}\right)\)

\(=\frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2}+\frac{a+b+c}{16}(1)\)

Áp dụng BĐT AM-GM:

\(3(ab^2+bc^2+ca^2)\leq (a^2+b^2+c^2)(a+b+c)\)

\(\Rightarrow \frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2)}\leq \frac{3}{16}(a+b+c)(2)\)

Từ $(1);(2)\Rightarrow \text{VT}\leq \frac{a+b+c}{4}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
 Khách vãng lai đã xóa
H24
5 tháng 1 2020 lúc 14:10

Bài 2/Áp dụng BĐT Bunyakovski:

\(\left(x^2+y^2+z^2\right)\left(1^2+3^2+5^2\right)\ge\left(x+3y+5z\right)^2\)

\(\Rightarrow P\ge\frac{\left(x+3y+5z\right)^2}{35}\) (*)

Ta có: \(x+3y+5z=x.1+\frac{y}{3}.9+\frac{z}{5}.25\)

\(=\frac{16z}{5}+8\left(\frac{y}{3}+\frac{z}{5}\right)+1\left(\frac{z}{5}+\frac{y}{3}+x\right)\)

\(\ge16+8.2+1.3=35\). Thay vào (*) là xong.

Đẳng thức xảy ra khi x = 1; y =3; z = 5

Bình luận (0)
 Khách vãng lai đã xóa
BL
23 tháng 12 2019 lúc 10:44

No choice teen, Akai Haruma, Arakawa Whiter, Phạm Lan Hương, soyeon_Tiểubàng giải, tth, Nguyễn Văn Đạt

@Nguyễn Việt Lâm

giúp em với ạ! Cần gấp lắm! Thanks nhiều!

Bình luận (0)
 Khách vãng lai đã xóa
AD
Xem chi tiết
NL
25 tháng 11 2019 lúc 20:20

a/ Nhân cả tử và mẫu của từng phân số với liên hợp của nó và rút gọn:

\(VT=\sqrt{a+3}-\sqrt{a+2}+\sqrt{a+2}-\sqrt{a+1}+\sqrt{a+1}-\sqrt{a}\)

\(=\sqrt{a+3}-\sqrt{a}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)

b/ \(VT=\frac{x}{x\left(x+y+z\right)+yz}+\frac{y}{y\left(x+y+z\right)+zx}+\frac{z}{z\left(x+y+z\right)+xy}\)

\(=\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(x+y\right)\left(y+z\right)}+\frac{z}{\left(x+z\right)\left(y+z\right)}\)

\(=\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (1)

Mặt khác ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)

Thật vậy, \(\left(x+y+z\right)\left(xy+yz+zx\right)=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)

\(xyz\le\frac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\) (theo AM-GM)

\(\Rightarrow\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)

Thay vào (1) \(\Rightarrow VT\le\frac{2\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)}=\frac{9}{4}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
AH
29 tháng 5 2020 lúc 0:08

Bài 1:

Áp dụng BĐT Bunhiacopxky ta có:

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)(x+y+z)\geq (1+1+1)^2\)

\(\Leftrightarrow A.1\geq 9\Leftrightarrow A\geq 9\)

Vậy GTNN của $A$ là $9$. Giá trị này đạt được tại $x=y=z=\frac{1}{3}$

Bình luận (0)
AH
29 tháng 5 2020 lúc 0:08

Bài 2:

Hoàn toàn tương tự bài 1

$S(a+b+c)\geq (1+1+1)^2$ theo BĐT Bunhiacopxky

$\Leftrightarrow S.3\geq 9\Rightarrow S\geq 3$

Vậy GTNN của $S$ là $3$ khi $a=b=c=1$

Bình luận (0)
AH
29 tháng 5 2020 lúc 0:11

Bài 3:

Áp dụng BĐT Bunhiacopxky như các bài trên ta có:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$

Mà $0< x+y+z\leq 6$ nên $\frac{9}{x+y+z}\geq \frac{9}{6}=\frac{3}{2}$

Do đó $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}$ (đpcm)

Dấu "=" xảy ra khi $x=y=z=2$

Bài 4:

Áp dụng BĐT Cô-si cho các số dương ta có:

$a^4+b^4+c^4+d^4\geq 4\sqrt[4]{a^4b^4c^4d^4}=4abcd$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=d>0$

Bình luận (0)
KT
Xem chi tiết
VC
27 tháng 1 2018 lúc 13:28

Áp dụng BĐ Svac-xơ, ta có 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\left(ĐPCM\right)\)

^_^

Bình luận (0)
LS
Xem chi tiết
PT
9 tháng 7 2020 lúc 14:35

áp dụng bđt Cô -si: x+y+z\(\ge3\sqrt[3]{xyz}\) với 3 số x,y,z không âm

ta có: \(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=3\sqrt[3]{\frac{1}{8}}=\frac{3}{2}\)(1)

tương tự: \(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\frac{3}{2}\) (2)

\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}\)(3)

cộng (1), (2) và (3) ta có: \(\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge3.\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{9}{2}-\frac{3}{2}-\frac{6}{4}=\frac{3}{2}\)

dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)


Bình luận (0)
NL
Xem chi tiết
HT
12 tháng 5 2015 lúc 22:30

CÔSI ta có VT<=1/xy+1/zy+1/zx. 

sau đó vẫn áp dụng bất đẳng thức cosi tùng đôi một vế phải đã cho ta sẽ đc điều phải chứng minh

Bình luận (0)
TH
Xem chi tiết
OV
16 tháng 6 2020 lúc 10:48

Áp dụng BĐT Côsi dưới dạng engel, ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right).\frac{9}{x+y+z}\) = 9

Dấu "=" xảy ra ⇔ x = y = z

Bình luận (0)
NL
17 tháng 6 2020 lúc 23:57

\(P=\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{2007}{xy+yz+zx}\)

\(P\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{2007}{\frac{1}{3}\left(x+y+z\right)^2}\)

\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{6021}{\left(x+y+z\right)^2}=\frac{6030}{\left(x+y+z\right)^2}\ge\frac{6030}{3^2}=670\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)
TS
Xem chi tiết