Cho \(\alpha,\beta\in\left(0;\dfrac{\pi}{2}\right)\) và sin \(\alpha=\dfrac{1}{\sqrt{5}}\) và Cos\(\beta=\dfrac{1}{\sqrt{10}}\) . Tính Cos \(\left(\alpha+\beta\right)\)
Cho \(\alpha\) , \(\beta\in\left(0;\dfrac{\pi}{2}\right)\) và sin \(\alpha\) = \(\dfrac{1}{\sqrt{5}}\) ; Cos \(\alpha\) = \(\dfrac{1}{\sqrt{10}}\) . Tính Cos \(\left(\alpha+\beta\right)\)
Kiểm tra lại đề bài, \(cosa=\dfrac{1}{\sqrt{10}}\) hay \(cos\beta=\dfrac{1}{\sqrt{10}}\)?
1.Cho \(\alpha,\beta\left(\alpha\ne\beta\right)\in\left(0;\dfrac{\pi}{2}\right)\)và thỏa mãn điều kiện \(\dfrac{cosx-cos\alpha}{cosx-cos\beta}=\dfrac{sin^2\alpha cos\beta}{sin^2\beta cos\alpha}\)
(giả sử \(x\) xác định). Chứng minh\(tan^2\dfrac{x}{2}=tan^2\dfrac{\alpha}{2}tan^2\dfrac{\beta}{2}\)
2. Giải hệ phương trình \(\left\{{}\begin{matrix}xy-2y-3=\sqrt{y-x-1}+\sqrt{y-3x+5}\\\left(1-y\right)\sqrt{2x-y}+2\left(x-1\right)=\left(2x-y-1\right)\sqrt{y}\end{matrix}\right.\)
3. Cho ba số thực dương a, b, c thỏa mãn \(\dfrac{1}{a+2}+\dfrac{1}{b+3}+\dfrac{1}{c+4}=1\). Tìm Min của biểu thức \(P=a+b+c+\dfrac{4}{\sqrt[3]{a\left(b+1\right)\left(c+2\right)}}+3\)
4. Tìm m để hệ bất phương trình \(\left\{{}\begin{matrix}x^2-5x+9\le\left|x-6\right|\\x^2+2x-3m^2+4\left|m\right|-4\le0\end{matrix}\right.\)
2.
ĐK: \(2x-y\ge0;y\ge0;y-x-1\ge0;y-3x+5\ge0\)
\(\left\{{}\begin{matrix}xy-2y-3=\sqrt{y-x-1}+\sqrt{y-3x+5}\left(1\right)\\\left(1-y\right)\sqrt{2x-y}+2\left(x-1\right)=\left(2x-y-1\right)\sqrt{y}\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left(1-y\right)\sqrt{2x-y}+y-1+2x-y-1-\left(2x-y-1\right)\sqrt{y}=0\)
\(\Leftrightarrow\left(1-y\right)\left(\sqrt{2x-y}-1\right)+\left(2x-y-1\right)\left(1-\sqrt{y}\right)=0\)
\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(1+\sqrt{y}\right)+\left(\sqrt{2x-y}-1\right)\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}+1\right)=0\)
\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(\sqrt{y}+\sqrt{2x-y}+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=2x-1\end{matrix}\right.\) (Vì \(\sqrt{y}+\sqrt{2x-y}+2>0\))
Nếu \(y=1\), khi đó:
\(\left(1\right)\Leftrightarrow x-5=\sqrt{-x}+\sqrt{-3x+6}\)
Phương trình này vô nghiệm
Nếu \(y=2x-1\), khi đó:
\(\left(1\right)\Leftrightarrow2x^2-5x-1=\sqrt{x-2}+\sqrt{4-x}\) (Điều kiện: \(2\le x\le4\))
\(\Leftrightarrow2x\left(x-3\right)+x-3+1-\sqrt{x-2}+1-\sqrt{4-x}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1\right)=0\)
Ta thấy: \(1+\sqrt{x-2}\ge1\Rightarrow-\dfrac{1}{1+\sqrt{x-2}}\ge-1\Rightarrow1-\dfrac{1}{1+\sqrt{x-2}}\ge0\)
Lại có: \(\dfrac{1}{1+\sqrt{4-x}}>0\); \(2x>0\)
\(\Rightarrow\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1>0\)
Nên phương trình \(\left(1\right)\) tương đương \(x-3=0\Leftrightarrow x=3\Rightarrow y=5\)
Ta thấy \(\left(x;y\right)=\left(3;5\right)\) thỏa mãn điều kiện ban đầu.
Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)=\left(3;5\right)\)
cho \(0^o< \alpha< \beta< 90^o\). chứng minh :\(\cos\left(\alpha-\beta\right)=\cos\left(\alpha\right)\cos\left(\beta\right)+\sin\left(\alpha\right)\sin\left(\beta\right)\)
Chứng minh đẳng thức:
\(\dfrac{sin\left(\alpha-\beta\right)}{sin\alpha sin\beta}+\dfrac{sin\left(\beta-\gamma\right)}{sin\beta sin\gamma}+\dfrac{sin\left(\gamma-\alpha\right)}{sin\gamma sin\alpha}=0\)
\(\dfrac{sin\left(a-b\right)}{sina.sinb}+\dfrac{sin\left(b-c\right)}{sinb.sinc}+\dfrac{sin\left(c-a\right)}{sinc.sina}\)
\(=\dfrac{sina.cosb-cosa.sinb}{sina.sinb}+\dfrac{sinb.cosc-cosb.sinc}{sinb.sinc}+\dfrac{sinc.cosa-cosc.sina}{sina.sinc}\)
\(=\dfrac{cosb}{sinb}-\dfrac{cosa}{sina}+\dfrac{cosc}{sincc}-\dfrac{cosb}{sinb}+\dfrac{cosa}{sina}-\dfrac{cosc}{sincc}\)
\(=0\)
Cho hàm số \(f:\left[a;b\right]\rightarrow\left[a;b\right]\) liên tục trên \(\left[a,b\right]\) với \(a< b\) thỏa mãn \(\left|f\left(\alpha\right)-f\left(\beta\right)\right|< \left|\alpha-\beta\right|\), \(\forall\alpha,\beta\in\left[a;b\right]\) phân biệt. Chứng minh rằng \(\exists!\gamma\in\left[a;b\right]:f\left(\gamma\right)=\gamma\)
(Ở đây kí hiệu \(\exists!\) nghĩa là tồn tại duy nhất)
Cho \(\tan\alpha\), \(\tan\beta\)là nghiệm phương trình: \(ax^2+bx+c=0\)
Tính theo a, b, c giá trị biểu thức: \(D=a.\sin^2\left(\alpha+\beta\right)+b.sin\left(\alpha+\beta\right).cos\left(\alpha+\beta\right)+c.cos^2\left(\alpha+\beta\right)\)
Chứng minh rằng các biểu thức sau là những hằng số không phụ thuộc \(\alpha,\beta\) :
a) \(\sin6\alpha\cot3\alpha-\cos6\alpha\)
b) \(\left[\tan\left(90^0-\alpha\right)-\cot\left(90^0+\alpha\right)\right]^2-\left[\cot\left(180^0+\alpha\right)+\cot\left(270^0+\alpha\right)\right]^2\)
c) \(\left(\tan\alpha-\tan\beta\right)\cot\left(\alpha-\beta\right)-\tan\alpha\tan\beta\)
d) \(\left(\cot\dfrac{\alpha}{3}-\tan\dfrac{\alpha}{3}\right)\tan\dfrac{2\alpha}{3}\)
a) \(sin6\alpha cot3\alpha cos6\alpha=2.sin3\alpha.cos3\alpha\dfrac{cos3\alpha}{sin3\alpha}-cos6\alpha\)
\(=2cos^23\alpha-\left(2cos^23\alpha-1\right)=1\) (Không phụ thuộc vào x).
b) \(\left[tan\left(90^o-\alpha\right)-cot\left(90^o+\alpha\right)\right]^2\)\(-\left[cot\left(180^o+\alpha\right)+cot\left(270^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+cot\left(90^o-\alpha\right)\right]^2\)\(-\left[cot\alpha+cot\left(90^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+tan\alpha\right]^2-\left[cot\alpha-tan\alpha\right]^2\)
\(=4tan\alpha cot\alpha=4\). (Không phụ thuộc vào \(\alpha\)).
c) \(\left(tan\alpha-tan\beta\right)cot\left(\alpha-\beta\right)-tan\alpha tan\beta\)
\(=\left(\dfrac{sin\alpha}{cos\alpha}-\dfrac{sin\beta}{cos\beta}\right).\dfrac{cos\left(\alpha-\beta\right)}{sin\left(\alpha-\beta\right)}-tan\alpha tan\beta\)
\(=\left(\dfrac{sin\alpha cos\beta-cos\alpha sin\beta}{cos\alpha cos\beta}\right).\dfrac{cos\left(\alpha-\beta\right)}{sin\left(\alpha-\beta\right)}\)\(-\dfrac{sin\alpha sin\beta}{cos\alpha cos\beta}\)
\(=\dfrac{sin\left(\alpha-\beta\right)}{cos\alpha cos\beta}.\dfrac{cos\left(\alpha-\beta\right)}{sin\left(\alpha-\beta\right)}-\dfrac{sin\alpha sin\beta}{cos\alpha cos\beta}\)
\(=\dfrac{cos\left(\alpha-\beta\right)}{cos\alpha cos\beta}-\dfrac{sin\alpha sin\beta}{cos\alpha cos\beta}\)
\(=\dfrac{cos\alpha cos\beta+sin\alpha sin\beta-sin\alpha sin\beta}{cos\alpha cos\beta}=\dfrac{cos\alpha cos\beta}{cos\alpha cos\beta}=1\).
1.Cho các góc\(\alpha,\beta\)nhọn và \(\alpha< \beta\). Chứng minh \(\sin\left(\beta-\alpha\right)=\sin\beta\cos\alpha-\cos\beta\sin\alpha\)
2.Cho các góc \(\alpha,\beta\)nhọn và \(\alpha< \beta\).Chứng minh \(\cos\left(\beta-\alpha\right)=\cos\beta\cos\alpha+\sin\beta\sin\alpha\)
3.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\sin\left(\alpha+\beta\right)=\sin\alpha\cos\beta+\sin\beta\cos\alpha\)
4.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\cos\left(\alpha+\beta\right)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)
Cho \(\Delta ABC.M,N,P\in BC,CA,AB.\)CM: AM,BN,CP đồng quy tại tâm tỉ cự của hệ điểm{A;B;C} với hệ số \(\left\{\alpha,\beta,\gamma\right\}\Leftrightarrow\hept{\begin{cases}\alpha+\beta+\gamma\ne0\\\beta\overrightarrow{MB}+\gamma\overrightarrow{MC}=\gamma\overrightarrow{NC}+\alpha\overrightarrow{NA}=\alpha\overrightarrow{PA}+\beta\overrightarrow{PB}=\overrightarrow{0}\end{cases}}\)
Cho \(0< \alpha,\beta< \frac{\pi}{2}\)và \(\left\{{}\begin{matrix}3\sin^2\alpha+2\sin^2\beta=1\\3\sin2\alpha-2\sin2\beta=0\end{matrix}\right.\). Chứng minh rằng: \(\alpha+2\beta=\frac{\pi}{2}\).