Giải vài phương trình của An Khô-va-ri-zmi:
a) \(x^2=12x+288;\) b) \(\dfrac{1}{12}x^2+\dfrac{7}{12}x=19.\)
Giải vài phương trình của An Khô-va-ri-zmi (xem Toán 7, Tập 2, tr.26):
x 2 = 12 x + 288
x2 = 12x + 288
⇔ x2 – 12x – 288 = 0
Có a = 1; b’ = -6; c = -288; Δ’ = b’2 – ac = (-6)2 – 1.(-288) = 324 > 0
Phương trình có hai nghiệm:
Vậy phương trình có hai nghiệm x1 = 24 và x2 = -12.
Giải vài phương trình của An Khô-va-ri-zmi (xem Toán 7, Tập 2, tr.26):
a ) x 2 = 12 x + 288 b ) 1 12 x 2 + 7 12 x = 19
a) x 2 = 12 x + 288 ⇔ x 2 – 12 x – 288 = 0
Có a = 1; b’ = -6; c = -288; Δ ’ = b ’ 2 – a c = ( - 6 ) 2 – 1 . ( - 288 ) = 324 > 0
Phương trình có hai nghiệm:
Vậy phương trình có hai nghiệm x 1 = 24 v à x 2 = - 12 .
b)
⇔ x 2 + 7 x = 228 ⇔ x 2 + 7 x – 228 = 0
Có a = 1; b = 7; c = -228; Δ = b 2 – 4 a c = 7 2 – 4 . 1 . ( - 228 ) = 961 > 0
Phương trình có hai nghiệm:
Vậy phương trình có hai nghiệm x 1 = 12 v à x 2 = - 19 .
Kiến thức áp dụng
Phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 – 4ac.
+ Nếu Δ > 0, phương trình có hai nghiệm phân biệt
+ Nếu Δ = 0, phương trình có nghiệm kép ;
+ Nếu Δ < 0, phương trình vô nghiệm.
* Về An-khô-va-ri-zmi (Muhammad inb Musa al – Khwarizmi):
An-khô-va-ri-zmi (780 – 850) là nhà toán học nổi tiếng người Trung Á.
Năm 820, ông viết một cuốn sách về Toán học, tên cuốn sách được dịch sang tiếng Anh với tiêu đề Algebra (dịch tiếng Việt là Đại số).
Ông được biết đến như là cha đẻ của môn Đại số. Ông dành cả đời mình nghiên cứu về đại số và đã có nhiều phát minh quan trọng trong lĩnh vực toán học.
Ngoài ra, ông cũng là nhà thiên văn học, địa lý học nổi tiếng và đóng góp một phần quan trọng trong việc vẽ bản đồ thế giới thời bấy giờ.
Giải vài phương trình của An Khô-va-ri-zmi (xem Toán 7, Tập 2, tr.26): 1 12 x 2 + 7 12 x = 19
⇔ x2 + 7x = 228
⇔ x2 + 7x – 228 = 0
Có a = 1; b = 7; c = -228; Δ = b2 – 4ac = 72 – 4.1.(-228) = 961 > 0
Phương trình có hai nghiệm:
Vậy phương trình có hai nghiệm x1 = 12 và x2 = -19.
Bài1: Giải các phương trình sau a,x^3+x^2-12x=0
Lời giải:
$x^3+x^2-12x=0$
$\Leftrightarrow x(x^2+x-12)=0$
$\Leftrightarrow x(x^2+4x-3x-12)=0$
$\Leftrightarrow x[x(x+4)-3(x+4)]=0$
$\Leftrightarrow x(x-3)(x+4)=0$
$\Rightarrow x=0$ hoặc $x-3=0$ hoặc $x+4=0$
$\Lefotrightarrow x=0; x=3$ hoặc $x=-4$
* mọi người giúp mình 2 bài này với ạ*
Bài 8: Cho phương trình (a2 - 4)x -12x + 7 = 0 (a là tham số)
a) Giải phương trình với a = 1
b) Tìm các giá trị của a sao cho phương trình nhận x = 1 là nghiệm.
c) Tìm điều kiện của a để phương trình đã cho luôn có một nghiệm duy nhất
Bài 9: Giải và biện luận phương trình ẩn x theo tham số m
a) (m2 - 9)x - m + 3 = 0
b)\(\dfrac{x+3}{x-1}=\dfrac{x+m}{x+1}\)
Bài 8:
a: Khi a=1 thì phương trình sẽ là \(\left(1-4\right)x-12x+7=0\)
=>-3x-12x+7=0
=>-15x+7=0
=>-15x=-7
hay x=7/15
b: Thay x=1 vào pt, ta được:
\(a^2-4-12+7=0\)
\(\Leftrightarrow\left(a-3\right)\left(a+3\right)=0\)
hay \(a\in\left\{3;-3\right\}\)
c: Pt suy ra là \(\left(a^2-16\right)x+7=0\)
Để phương trình đã cho luôn có một nghiệm duy nhất thì (a-4)(a+4)<>0
hay \(a\notin\left\{4;-4\right\}\)
B1. cho phương trình (x-1)^3-(a^2-a+7)(x-1)-3(a^2-a-2)=0
a, tìm các giá trị của a để một trong các nghiệm là 2
b, giải phương trình với các giá trị đó của a
B2.giải pương trình với tham số a
a, 4ax^3-12x^2-ax+3=0
b, 2a^2x^3+5a^2x^2-8x=20
Bài 2:
a: \(\Leftrightarrow4x^2\left(ax-3\right)-\left(ax-3\right)=0\)
\(\Leftrightarrow\left(ax-3\right)\left(2x-1\right)\left(2x+1\right)=0\)
Trường hợp 1: a=0
=>(2x-1)(2x+1)=0
=>x=1/2 hoặc x=-1/2
Trường hợp 2: a<>0
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\\x=\dfrac{3}{a}\end{matrix}\right.\)
b: \(\Leftrightarrow a^2x^2\left(2x+5\right)-4\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(a^2x^2-4\right)=0\)
Trường hợp 1: a=0
Phương trình sẽ là 2x+5=0
hay x=-5/2
Trường hợp 2: a<>0
Phương trình sẽ là \(\left(2x+5\right)\left[\left(ax\right)^2-4\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=-\dfrac{2}{a}\\x=\dfrac{2}{a}\end{matrix}\right.\)
Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình sau:
a ) 4 x 2 + 2 x − 5 = 0 b ) 9 x 2 − 12 x + 4 = 0 c ) 5 x 2 + x + 2 = 0 d ) 159 x 2 − 2 x − 1 = 0
a) Phương trình 4 x 2 + 2 x − 5 = 0
Có a = 4; b = 2; c = -5, a.c < 0
⇒ Phương trình có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-et ta có:
b) Phương trình . 9 x 2 − 12 x + 4 = 0
Có a = 9; b' = -6; c = 4 ⇒ Δ 2 = ( - 6 ) 2 - 4 . 9 = 0
⇒ Phương trình có nghiệm kép x 1 = x 2 .
Theo hệ thức Vi-et ta có:
c) Phương trình 5 x 2 + x + 2 = 0
Có a = 5; b = 1; c = 2 ⇒ Δ = 1 2 − 4.2.5 = − 39 < 0
⇒ Phương trình vô nghiệm.
d) Phương trình 159 x 2 − 2 x − 1 = 0
Có a = 159; b = -2; c = -1; a.c < 0
⇒ Phương trình có hai nghiệm phân biệt x 1 ; x 2 .
Theo hệ thức Vi-et ta có:
Giải phương trình A) (x-1)²+2=x²+3x B) x-3/x+3 - 2/2-3=-3(x-1)/x²-9 C) 12x+1/12
a) Ta có: \(\left(x-1\right)^2+2=x^2+3x\)
\(\Leftrightarrow x^2-2x+1+2-x^2-3x=0\)
\(\Leftrightarrow-5x=-3\)
hay \(x=\dfrac{3}{5}\)
Giải phương trình:
(x+2)3-16.(x+2)=0
2x3-6x2+12x-8=0
\(\left(x+2\right)^3-16\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left[\left(x+2\right)^2-16\right]=0\)
\(\Rightarrow\left(x+2\right)\left(x+2-4\right)\left(x+2+4\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x-2\right)\left(x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-2=0\\x+6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=2\\x=-6\end{matrix}\right.\)
Vậy \(S=\left\{-2;2;-6\right\}\)
\(2x^3-6x^2+12x-8=0\)
\(\Rightarrow2x^3-2x^23+3.2^2-2^3=0\)
\(\Rightarrow\left(x-2\right)^3=0\)
\(\Rightarrow x-2=0\)
\(\Rightarrow x=2\)