a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
=>BA=BE
b: ta có: ΔBAD=ΔBED
=>DA=DE
mà DE<DC
nên DA<DC
c: Ta có: ΔBAH vuông tại H
=>BH<BA
mà BA=BE
nên BH<BE(1)
Ta có: ΔBAC vuông tại A
=>BA<BC
mà BE=BA
nên BE<BC(2)
từ (1) và (2) suy ra BH<BE<BC
Sửa đề: Lấy E thuộc BC sao cho BE=BA
a: Chứng minh ΔBAD=ΔBED
Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
=>ΔDEC vuông tại E
c: Sửa đề: Tia BA cắt ED tại F
Ta có: ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>AF=EC
Giúp em câu c với ạ em đang cần gấp!!!!!!!
d.
Theo chứng minh câu c ta có tam giác NPO cân tại N
Mà I là trung điểm OP \(\Rightarrow NI\) là đường trung tuyến
Trong tam giác NPO cân tại N, NI là trung tuyến nên nó đồng thời là phân giác góc \(\widehat{ONP}\)
Hay NI là phân giác trong góc \(\widehat{MNP}\)
Lại có ND cũng là phân giác trong góc \(\widehat{MNP}\) (giả thiết)
\(\Rightarrow\) Đường thẳng NI trùng đường thẳng ND
Hay 3 điểm N, D, I thẳng hàng
Cho tam giác ABC vuông tại A. trên cạnh BC lấy điểm D sao cho BD = BA. Tia phân giác góc B cắt AC ở E
a. C/m: Tam giác BEA = tam giác BED.
b. Qua C vẽ đường thẳng vuông góc với BE tại H. CH cắt AB tại F. C/m: BF = BC.
c. C/m: tam giác BAC = tam giác BDF và c/m: D, E, F thẳng hàng
a: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBAE=ΔBDE
b: Xét ΔBFC có
BH là đường cao
BH là đường phân giác
Do đó: ΔBFC cân tại B
c: Ta có: ΔBFC cân tại B
=>BF=BC
Xét ΔBDF và ΔBAC có
BD=BA
\(\widehat{DBF}\) chung
BF=BC
Do đó: ΔBDF=ΔBAC
=>\(\widehat{BDF}=\widehat{BAC}=90^0\)
Ta có: ΔBAE=ΔBDE
=>\(\widehat{BAE}=\widehat{BDE}\)
mà \(\widehat{BAE}=90^0\)
nên \(\widehat{BDE}=90^0\)
mà \(\widehat{BDF}=90^0\)
và DE,DF có điểm chung là D
nên D,E,F thẳng hàng
Cho tam giác ABC vuông tại B, có AC = 2AB. Tia phân giác của góc A cắt BC tại M, qua M kẻ đường vuông góc với AC tại H
Đề thiếu yêu cầu. Bạn xem lại
Câu 1: Cho ΔABC có AB = AC,M là trung điểm của BC.Trên tia đối của tia MA lấy điểm D sao cho AM = MD.
a)Chứng minh ΔABM = ΔDCM
b)Chứng minh AB // DC
c)Chứng minh AM là đường trung trực của đoạn thẳng BC
Câu 2 : Tính tổng
B=\(\dfrac{3}{5}+\dfrac{3}{^45}+\dfrac{3}{^75}+...+\dfrac{3}{^{100}5}\)
GIÚP MÌNH VỚI Ạ
Câu 1:
a. Xét tam giác $ABM$ và $DCM$ có:
$BM=CM$ (do $M$ là trung điểm $AB$)
$AM=MD$ (gt)
$\widehat{AMB}=\widehat{DMC}$ (đối đỉnh)
$\Rightarrow \triangle ABM=\triangle DCM$ (c.g.c)
b.
Từ tam giác bằng nhau phần a suy ra $\widehat{ABM}=\widehat{DCM}$
Mà 2 góc này ở vị trí so le trong nên $AB\parallel CD$
c.
Xét tam giác $ABM$ và $ACM$ có:
$AB=AC$
$BM=CM$
$AM$ chung
$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)
$\Rightarrow \widehat{AMB}=\widehat{AMC}$
Mà 2 góc này kề bù nên $\widehat{AMB}=\widehat{AMC}=90^0$
$\Rightarrow AM\perp BC$ hay $AM\perp BC$
Mà $M$ là trung điểm của $BC$ nên $AM$ là trung trực của $BC$
Giúp mình với Cho ∆ AMN có AM=AN, tia phân giác  cắt BC tại K, gọi H là điểm nằm giữa A và K . Chứng minh a, ∆AHM=∆AHNb,∆HMK=∆HNk
Sửa đề: cắt MN tại K
a: Xét ΔAHM và ΔAHN có
AH chung
\(\widehat{HAM}=\widehat{HAN}\)
AM=AN
Do đó: ΔAHM=ΔAHN
b: Ta có: ΔAHM=ΔAHN
=>HM=HN
Ta có: ΔAMN cân tại A
mà AK là đường phân giác
nên K là trung điểm của MN
=>KM=KN
Xét ΔHKM và ΔHKN có
HK chung
KM=KN
HM=HN
Do đó: ΔHKM=ΔHKN
Cho tam giác ABC vuông tại A.Tia phân giác của góc B cắt cạnh AC tại E,trên cạnh BC lấy điểm F sao cho BF=BA
a) Chứng minh:Tam giác ABE= tam giác FBE
b) Chứng minh: EF vuông góc BC
c)Trên tia đối tia EF lấy M sao cho EM=EC.Chứng minh B,A,M thẳng hàng
Vẽ hình giúp mình nha:33333 làm giúp mình bài này:333 càm ơn><
a: Xét ΔBAE và ΔBFE có
BA=BF
\(\widehat{ABE}=\widehat{FBE}\)
BE chung
Do đó: ΔBAE=ΔBFE
b: Ta có: ΔBAE=ΔBFE
=>\(\widehat{BAE}=\widehat{BFE}\)
mà \(\widehat{BAE}=90^0\)
nên \(\widehat{BFE}=90^0\)
=>EF\(\perp\)BC
c: Xét ΔAEM và ΔFEC có
EA=EF
\(\widehat{AEM}=\widehat{FEC}\)
EM=EC
Do đó: ΔAEM=ΔFEC
=>\(\widehat{EAM}=\widehat{EFC}\)
mà \(\widehat{EFC}=90^0\)
nên \(\widehat{EAM}=90^0\)
Ta có: \(\widehat{BAM}=\widehat{BAE}+\widehat{MAE}\)
\(=90^0+90^0=180^0\)
=>B,A,M thẳng hàng
Cho tam giác ABC có AB = AC và AB > BC. M là trung điểm của BC.
a. Chứng minh: tam giác ABM = tam giác ACM
b. Trên cạnh AB lấy D, trên cạnh AC lấy điểm E sao cho AD = AE. Chứng minh: MD = ME
c. Gọi N là trung điểm của BD. Trên tia đối của tian NM lấy điểm K sao cho NK = NM. Chứng minh: K, D, E thẳng hàng
(em mới học đến trường hợp bằng nhau t2 và t3 của tam giác thoi ạ, mng giải giúp theo mấy bài trước với ạ, em cảm ơn)
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Ta có: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
=>\(\widehat{DAM}=\widehat{EAM}\)
Xét ΔDAM và ΔEAM có
DA=EA
\(\widehat{DAM}=\widehat{EAM}\)
AM chung
Do đó: ΔDAM=ΔEAM
=>MD=ME
c: Xét ΔNKD và ΔNMB có
NK=NM
\(\widehat{KND}=\widehat{MNB}\)(hai góc đối đỉnh)
ND=NB
Do đó: ΔNKD=ΔNMB
=>\(\widehat{NKD}=\widehat{NMB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên KD//BM
mà M\(\in\)BC
nên KD//BC
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
Ta có: KD//BC
DE//BC
KD,DE có điểm chung là D
Do đó: K,D,E thẳng hàng
Cho tam giác ABC vuông tại A.Gọi M là trung điểm của AC,trên tia đối của tia MB lấy điểm D sao cho MD=MB
a)Chứng minh AD=BC
b)Chứng minh CD vuông góc với AC
c)Đường thẳng qua B song song với AC cắt tia DC tại N.Chứng minh tam giác ABM= tam giác CNM
a: Xét ΔMAD và ΔMCB có
MA=MC
\(\widehat{AMD}=\widehat{CMB}\)(hai góc đối đỉnh)
MD=MB
Do đó: ΔMAD=ΔMCB
=>AD=BC
b: Xét ΔMAB và ΔMCD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD
Do đó: ΔMAB=ΔMCD
=>\(\widehat{MAB}=\widehat{MCD}=90^0\)
=>CD\(\perp\)CA
c: Xét tứ giác ABNC có
AB//NC
AC//BN
Do đó: ABNC là hình bình hành
=>AB=CN
Xét ΔABM vuông tại A và ΔCNM vuông tại C có
AB=CN
AM=CM
Do đó: ΔABM=ΔCNM