giúp mình bài này với ạ
giúp mình bài này với ạ
a: Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại trung điểm của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
=>\(OH\cdot OA=R^2\)
b: Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC\(\perp\)CD tại C
Ta có: BC\(\perp\)CD
OA\(\perp\)BC
Do đó: CD//OA
GIúp mình bài hình này với ạ
a: ta có: ΔOBC cân tại O
mà OA là đường cao
nên OA là phân giác của góc BOC
Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OBA}=\widehat{OCA}=90^0\)
=>AC là tiếp tuyến của (O)
b: Ta có: OA//BD
BC\(\perp\)OA
Do đó: BD\(\perp\)BC
=>ΔBDC vuông tại B
Ta có: ΔBDC vuông tại B
=>ΔBDC nội tiếp đường tròn đường kính CD
mà ΔBDC nội tiếp (O)
nên CD là đường kính của (O)
c: Xét (O) có
ΔDEC nội tiếp
DC là đường kính
Do đó: ΔDEC vuông tại E
=>EC\(\perp\)ED tại E
=>CE\(\perp\)AD tại E
Xét ΔCDA vuông tại C có CE là đường cao
nên \(AE\cdot AD=AC^2\left(1\right)\)
Xét ΔCOA vuông tại C có CH là đường cao
nên \(AH\cdot AO=AC^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)
=>\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
Xét ΔAEH và ΔAOD có
\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
\(\widehat{EAH}\) chung
Do đó: ΔAEH đồng dạng vớiΔAOD
=>\(\widehat{AEH}=\widehat{AOD}\)
mà \(\widehat{AEH}+\widehat{DEH}=180^0\)(hai góc kề bù)
nên \(\widehat{DEH}+\widehat{AOD}=180^0\)
=>\(\widehat{DEH}+\widehat{DOH}=180^0\)
=>DEHO là tứ giác nội tiếp
=>\(\widehat{ODH}=\widehat{OEH}\)
cho (O;R) đường kính AB, C thuộc (O;R)kẻ tiếp tuyến tại A, tiếp tuyến này cắt tia BC ở D. Đường thẳng tiếp xúc với đường tròn tại C cắt AD ở E. Đường thẳng kẻ qua O vuông góc BC tại N cắt tia EC ở F. Gọi H là hình chiếu của C trên AB, AC cắt OE tại M
CMR: Đường tròn ngoại tiếp △ HMN luôn đi qua 1 điểm cố định.
mong mọi người giúp e ạ.
Xét (O) có
EA,EC là các tiếp tuyến
Do đó: EA=EC
=>E nằm trên đường trung trực của AC(1)
Ta có: OA=OC
=>O nằm trên đường trung trực của AC(2)
Từ (1) và (2) suy ra OE là đường trung trực của AC
=>OE\(\perp\)AC tại M
Xét (O) có
ΔCAB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
Xét tứ giác CMON có \(\widehat{CMO}=\widehat{CNO}=\widehat{MCN}=90^0\)
nên CMON là hình chữ nhật
=>C,M,O,N cùng thuộc đường tròn đường kính CO(1)
Ta có: ΔCHO vuông tại H
=>H nằm trên đường tròn đường kính CO(2)
Từ (1),(2) suy ra C,M,O,N,H cùng nằm trên đường tròn đường kính CO
mà O cố định
nên đường tròn ngoại tiếp ΔHMN luôn đi qua điểm O cố định
cho tam giác đều nội tiếp đường tròn (o;r). đường thẳng vuông góc với ac tại a cắt (o) tại d, cắt tiếp tuyến của đường tròn (o) tại e . gọi m là trung điểm của ce và f của ac và bd .a) chứng minh :am là tiếp tuyến của đường tròn (o) b) tứ giác amcb là hình gì? vì sao? c) chứng minh: bc//ef e) chứng minh: c,d,e,f cùng thuộc một đường tròn f) tính cf,de theo r
Mọi người giúp mình với ạ
a: Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
b: Xét (O) có
ΔCED nội tiếp
CD là đường kính
Do đó: ΔCED vuông tại E
=>CE\(\perp\)ED tại E
=>CE\(\perp\)AD tại E
Xét ΔDCA vuông tại C có CE là đường cao
nên \(AE\cdot AD=AC^2\)
mà AC=AB
nên \(AE\cdot AD=AB^2\)
c: Xét (O) có
MB,ME là tiếp tuyến
Do đó: MB=ME
Xét (O) có
NE,NC là tiếp tuyến
Do đó: NE=NC
Chu vi tam giác AMN là:
\(C_{AMN}=AM+MN+AN\)
\(=AM+ME+EN+NA\)
\(=AM+MB+NC+NA\)
\(=AB+AC\)
Mọi người giúp mình bài này với
a: Ta có: ΔOBC cân tại O
mà OH là đường cao
nên OH là phân giác của \(\widehat{BOC}\)
=>OA là phân giác của góc BOC
Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OBA}=\widehat{OCA}=90^0\)
=>AC là tiếp tuyến của (O)
b: Xét (O) có
ΔCED nội tiếp
CD là đường kính
Do đó: ΔCED vuông tại E
=>CE\(\perp\)ED tại E
=>CE\(\perp\)AD tại E
Xét ΔDCA vuông tại C có CE là đường cao
nên \(AE\cdot AD=AC^2\)
mà AC=AB
nên \(AE\cdot AD=AB^2\)
c: Gọi giao điểm của ON với DE là K
Theo đề, ta có: ON\(\perp\)DE tại K
Ta có: ΔODE cân tại O
mà OK là đường cao
nên K là trung điểm của DE
Xét ΔOKA vuông tại K và ΔOHN vuông tại H có
\(\widehat{KOA}\) chung
Do đó: ΔOKA đồng dạng với ΔOHN
=>\(\dfrac{OK}{OH}=\dfrac{OA}{ON}\)
=>\(OK\cdot ON=OH\cdot OA\)(1)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=OD^2\left(2\right)\)
Từ (1) và (2) suy ra \(OD^2=OK\cdot ON\)
=>\(\dfrac{OD}{OK}=\dfrac{ON}{OD}\)
Xét ΔODN và ΔOKD có
\(\dfrac{OD}{OK}=\dfrac{ON}{OD}\)
\(\widehat{DON}\) chung
DO đó: ΔODN đồng dạng với ΔOKD
=>\(\widehat{ODN}=\widehat{OKD}=90^0\)
=>DN là tiếp tuyến của (O)
cho tam giác ABC vuông tại A(AB<AC), đường cao AH.Gọi D và E lần lượt là các đường vuông góc kẻ từ H xuống AB và AC
a, cho BH=4cm ,CH=9cm. Tính AH, DE
b, chứng minh bốn điểm A,D,H,E cùng nằm trên một đường tròn
c,đường phân giác BAH cắt BC tại K. Gọi I là trung điểm của AK, Chứng minh CI vuông góc AK
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>AH=DE=6(cm)
b: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=180^0\)
=>ADHE là tứ giác nội tiếp
=>A,D,H,E cùng thuộc 1 đường tròn
c: \(\widehat{CAK}+\widehat{BAK}=90^0\)
\(\widehat{CKA}+\widehat{HAK}=90^0\)
mà \(\widehat{BAK}=\widehat{HAK}\)
nên \(\widehat{CAK}=\widehat{CKA}\)
=>ΔCAK cân tại C
mà CI là đường trung tuyến
nên CI vuông góc AK
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC), có AB = 9cm; AC =12cm
a) Tính AH.
b) Gọi I và K lần lượt là hình chiếu của H lên các cạch AB và AC. Tính: AI.IB + AK.KC.
c) Chứng tỏ rằng: Bốn điểm A,I,H,K thuộc một
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH=\dfrac{12\cdot9}{15}=7.2\left(cm\right)\)
b: ΔAHB vuông tại H có HI là đường cao
nên \(AI\cdot IB=HI^2\)
ΔAHC vuông tại H có HK là đường cao
nên \(AK\cdot KC=HK^2\)
Xét tứ giác AIHK có
\(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)
=>AIHK là hình chữ nhật
=>\(HI^2+HK^2=IK^2=AH^2\)
=>\(AI\cdot IB+AK\cdot KC=AH^2=7.2^2=51.84\)
c: Vì AIHK là hình chữ nhật
nên A,I,H,K cùng thuộc đường tròn đường kính AH
Tam giác ABC nhọn nội tiếp đường tròn (O;R). Gọi D trung điểm BC. Tia OD cắt (O) tại E; AE cắt BC tại J. Tiếp tuyến tại A của (O) cắt BC tại M. DO cắt (O) tại F. BF cắt AE tại I. EF cắt AC tại N. Chứng minh IN//BC.
Bổ sung đề: đường kính BD
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)
=>ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
=>A nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC(3)
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC\(\perp\)CD(4)
Từ (3) và (4) suy ra OH//DC
Xét ΔBCD có OH//DC
nên \(\dfrac{OH}{DC}=\dfrac{BO}{BD}=\dfrac{1}{2}\)
=>DC=2OH
c: Bổ sung đề; AD cắt (O) tại điểm thứ hai là E
Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
=>BE\(\perp\)ED tại E
=>BE\(\perp\)AD tại E
Xét ΔBDA vuông tại B có BElà đường cao
nên \(AE\cdot AD=AB^2\left(5\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(6\right)\)
Từ (5) và (6) suy ra \(AE\cdot AD=AH\cdot AO\)
=>\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
Xét ΔAEH và ΔAOD có
\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
\(\widehat{EAH}\) chung
Do đó: ΔAEH đồng dạng với ΔAOD
=>\(\widehat{AHE}=\widehat{ADO}\)