Cho (O) và (O’) tiếp xúc ngoài A. Gọi MN là tiếp tuyến chung ngoài của 2 đường tròn với M thuộc (O) , N thuộc (O’) a) tính góc MAN b) tính dộ dài MN biét OA=9cm, O’A =4cm
Cho (O) và (O’) tiếp xúc ngoài A. Gọi MN là tiếp tuyến chung ngoài của 2 đường tròn với M thuộc (O) , N thuộc (O’) a) tính góc MAN b) tính dộ dài MN biét OA=9cm, O’A =4cm
a: Gọi AH là tiếp tuyến chung của hai đường tròn (O) và (O'), H∈MN
Xét (O) có
HM,HA là các tiếp tuyến
Do đó: HM=HA và HO là phân giác của góc MHA
Xét (O') có
HA,HN là các tiếp tuyến
Do đó: HA=HN và HO' là phân giác của góc AHN
Ta có: HM=HA
HN=HA
Do đó: HM=HN
=>H là trung điểm của MN
Xét ΔAMN có
AH là đường trung tuyến
\(AH=\dfrac{MN}{2}\)
Do đó: ΔAMN vuông tại A
=>\(\widehat{MAN}=90^0\)
b: HO là phân giác của góc MHA
=>\(\widehat{MHA}=2\cdot\widehat{OHA}\)
HO' là phân giác của góc AHN
=>\(\widehat{AHN}=2\cdot\widehat{AHO'}\)
Ta có: \(\widehat{MHA}+\widehat{NHA}=180^0\)(hai góc kề bù)
=>\(2\cdot\left(\widehat{OHA}+\widehat{O'AH}\right)=180^0\)
=>\(2\cdot\widehat{OHO'}=180^0\)
=>\(\widehat{OHO'}=90^0\)
Xét ΔHO'O vuông tại H có HA là đường cao
nên \(HA^2=OA\cdot O'A\)
=>\(HA^2=9\cdot4=36\)
=>\(HA=\sqrt{36}=6\left(cm\right)\)
MN=2*HA
=>MN=2*6=12(cm)
Cho đtr (O; R) và 1 điểm A nằm cách O 1 khoảng bằng 2R. Từ A vẽ các tt AB, AC với
đtr (B, C là các tiếp điểm). đg thg vuông góc với OB tại O cắt AC tại N, đg thg vuông góc với
OC tại O cắt AB tại M
a) CMR: AMON là hình thoi
b) Đthg MN là tt của đtr (O)
c) Tính diện tích hình thoi AMON
a: ta có: ON\(\perp\)OB
AB\(\perp\)OB
Do đó: ON//AB
=>ON//AM
Ta có: OM\(\perp\)OC
AC\(\perp\)OC
Do đó: OM//AC
=>OM//AN
Xét tứ giác OMAN có
OM//AN
ON//AM
Do đó: OMAN là hình bình hành
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AO là phân giác của góc BAC
=>AO là phân giác của góc MAN
Hình bình hành OMAN có AO là phân giác của góc MAN
nên OMAN là hình thoi
b: Kẻ OH\(\perp\)MN tại H
Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BAO}=30^0\)
Ta có: ΔBOA vuông tại B
=>\(\widehat{BOA}+\widehat{BAO}=90^0\)
=>\(\widehat{BOA}=60^0\)
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: OA là phân giác của góc BOC
=>\(\widehat{BOC}=2\cdot\widehat{BOA}=120^0\)
Ta có: \(\widehat{BOM}+\widehat{COM}=\widehat{BOC}\)
=>\(\widehat{BOM}=120^0-90^0=30^0\)
Xét ΔMOA có MO=MA
nên ΔMOA cân tại M
=>\(\widehat{MOA}=\widehat{MAO}=30^0\)
Xét ΔOBM vuông tại B và ΔOHM vuông tại H có
OM chung
\(\widehat{BOM}=\widehat{HOM}\left(=30^0\right)\)
Do đó: ΔOBM=ΔOHM
=>OB=OH=R
Xét (O) có
OH là bán kính
MN\(\perp\)OH tại H
Do đó: MN là tiếp tuyến của (O)
Từ một điểm \(A\) ở ngoài đường tròn \(\left(O\right)\), kẻ hai tiếp tuyến \(AB,AC\) với đường tròn tâm \(O\) (\(B,C\) là các tiếp điểm).
a) Chứng minh bốn điểm \(A,B,O,C\) cùng thuộc một đường tròn.
b) Vẽ cát tuyến \(ADE\) (\(D\) nằm giữa \(A,E\)) sao cho điểm \(O\) nằm trong góc \(EAB\). Gọi \(I\) là trung điểm của \(ED\). \(BC\) cắt \(OA,EA\) theo thứ tự tại \(H,K\). Chứng minh \(OA\perp BC\) tại \(H\) và \(AH\cdot AO=AK\cdot AI\).
c) Tia \(AO\) cắt \(\left(O\right)\) tại hai điểm \(M,N\) (\(M\) nằm giữa \(A,N\)). Gọi \(P\) là trung điểm của \(HN\), đường vuông góc với \(BP\) vẽ từ \(H\) cắt tia \(BM\) tại \(S\). Chứng minh \(MB=MS\).
a: Xét tứ giác ABOC có
\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
=>ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=> A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC tại H và H là trung điểm của BC
Ta có: ΔOED cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)ED tại I
=>OI\(\perp\)AE tại I
Xét ΔAIO vuông tại H và ΔAHK vuông tại H có
\(\widehat{IAO}\) chung
Do đó: ΔAIO~ΔAHK
=>\(\dfrac{AI}{AH}=\dfrac{AO}{AK}\)
=>\(AH\cdot AO=AI\cdot AK\)
Cho mình xin hỏi cách làm câu C
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)
=>ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H
b: Xét (O) có
ΔEDB nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
=>BE\(\perp\)ED tại E
=>BE\(\perp\)AD tại E
Xét ΔDBA vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(3\right)\)
XétΔABO vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(4\right)\)
Từ (3) và (4) suy ra \(AE\cdot AD=AH\cdot AO\)
a: Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó: ΔABC vuông tại A
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=\left(2R\right)^2-R^2=3R^2\)
=>\(AC=R\sqrt{3}\)
b:
Ta có: AB=AO=R
OA=AD=R=DO/2
Do đó: \(AB=OA=OD=\dfrac{DO}{2}\)
Xét ΔDBO có
BA là đường trung tuyến
\(BA=\dfrac{DO}{2}\)
Do đó: ΔDBO vuông tại B
=>DB\(\perp\)BO tại B
=>DB là tiếp tuyến của (O)
Giúp mình bài này với ạ
a: Xét (O) có
ΔABI nội tiếp
AI là đường kính
Do đó: ΔABI vuông tại B
=>AB\(\perp\)BI
Xét (O) có
ΔACI nội tiếp
AI là đường kính
Do đó: ΔAIC vuông tại C
=>AC\(\perp\)CI
Ta có: BH\(\perp\)AC
AC\(\perp\)CI
Do đó: BH//CI
Ta có: CH\(\perp\)AB
IB\(\perp\)AB
Do đó: CH//IB
Xét tứ giác BHCI có
BH//CI
BI//CH
Do đó: BHCI là hình bình hành
b: Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
=>AK\(\perp\)BC
Xét (O) có
ΔAKI nội tiếp
AI là đường kính
Do đó: ΔAKI vuông tại K
=>AK\(\perp\)KI
Ta có: KI\(\perp\)AK
BC\(\perp\)AK
Do đó: KI//BC
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{AKC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{AKC}\)
mà \(\widehat{ABC}=\widehat{CHK}\left(=90^0-\widehat{ECB}\right)\)
nên \(\widehat{CHK}=\widehat{CKA}=\widehat{CKH}\)
=>ΔCKH cân tại C
=>CK=CH
mà BI=CH(BHCI là hình bình hành)
nên BI=CK
Xét tứ giác BCIK có
BC//KI
Do đó: BCIK là hình thang
Hình thang BCIK có BI=CK
nên BCIK là hình thang cân
a: Xét tứ giác BEFC có \(\widehat{BEC}=\widehat{BFC}=90^0\)
nên BEFC là tứ giác nội tiếp
=>B,E,F,C cùng thuộc một đường tròn
b: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>AB\(\perp\)BD
Ta có:BD\(\perp\)AB
CH\(\perp\)AB
Do đó: BD//CH
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>CD\(\perp\)AC
Ta có: CD\(\perp\)AC
BH\(\perp\)AC
Do đó: BH//CD
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà I là trung điểm của BC
nên I là trung điểm của HD
=>H đối xứng D qua I
c: Gọi giao điểm của AH với BC là M
Xét ΔABC có
BF,CE là các đường cao
BF cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại M
Ta có: \(\widehat{BAM}+\widehat{ABC}=90^0\)(ΔAMB vuông tại M)
\(\widehat{BCE}+\widehat{EBC}=90^0\)(ΔEBC vuông tại E)
Do đó: \(\widehat{BAM}=\widehat{BCE}\)(1)
Ta có: ΔEAH vuông tại E
mà EK là đường trung tuyến
nên KE=KH
=>\(\widehat{KEH}=\widehat{KHE}\)
mà \(\widehat{KHE}+\widehat{BAM}=90^0\)
nên \(\widehat{KEH}+\widehat{BAM}=90^0\)(2)
Ta có: ΔEBC vuông tại E
mà EI là trung tuyến
nên IE=IC
=>\(\widehat{IEC}=\widehat{ICE}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{KEH}+\widehat{IEC}=90^0\)
=>\(\widehat{KEI}=90^0\)
=>EK\(\perp\)EI
Cho đường tròn (O,R) .từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB và AC với đường tròn (B,C là tiếp điểm).AO cắt BC tại H a)cm 4 điểm A,B,O,C cùng thuộc đường tròn b) cm OA vuông góc BC tại H c) cho OA=2R .tính chu vi tam giác ABC theo R d) vẽ cát tuyến AMN với đường tròn.xác định vị trí của cát tuyến AMN sao cho nhỏ nhất .
a: Xét tứ giác ABOC có
\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
=>ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC và AO là phân giác của góc BAC
Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
từ (1) và (2) suy ra AO là đường trung trực của BC
=>OA\(\perp\)BC
c: Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BAO}=30^0\)
Ta có: AO là phân giác của góc BAC
=>\(\widehat{BAC}=2\cdot\widehat{BAO}=60^0\)
Ta có: ΔOBA vuông tại B
=>\(BO^2+BA^2=OA^2\)
=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(BA=R\sqrt{3}\)
Xét ΔBAC có AB=AC và \(\widehat{BAC}=60^0\)
nên ΔBAC đều
=>\(S_{BAC}=\dfrac{BA^2\cdot\sqrt{3}}{4}=\dfrac{3R^2\cdot\sqrt{3}}{4}\)
giúp mình với ạ :(((
a:
Xét ΔODI vuông tại D có DH là đường cao
nên \(IH\cdot IO=ID^2\)
Xét ΔODI vuông tại D có \(OI^2=OD^2+DI^2\)
=>\(DI^2=OI^2-OD^2\)
=>\(IH\cdot IO=OI^2-OD^2\)
Xét ΔIEO vuông tại E và ΔIHC vuông tại H có
\(\widehat{EIO}\) chung
Do đó: ΔIEO đồng dạng với ΔIHC
=>\(\dfrac{IE}{IH}=\dfrac{IO}{IC}\)
=>\(IE\cdot IC=IH\cdot IO=ID^2=OI^2-R^2\)