Bài 9: Ôn tập chương Phép dời hình và phép đồng dạng trong mặt phẳng

AN
Xem chi tiết
NL
23 tháng 10 2021 lúc 0:03

Cách 1 chắc chắn sai vì pt d' ko cùng phương với d

Còn sai ở đâu thì nhìn cách làm rối loạn quá nên ko biết

Bình luận (0)
NL
23 tháng 10 2021 lúc 0:07

Làm cách 1 theo kiểu "cơ bản" thì:

\(A\left(-1;1\right)\Rightarrow\left\{{}\begin{matrix}x_{A'}=-3.\left(-1\right)+\left(1-\left(-3\right)\right).\left(-1\right)=-1\\y_{A'}=-3.1+\left(1-\left(-3\right)\right).3=9\end{matrix}\right.\) \(\Rightarrow A'\left(-1;9\right)\)

\(B\left(2;-1\right)\Rightarrow\left\{{}\begin{matrix}x_{B'}=-3.2+\left(1-\left(-3\right)\right).\left(-1\right)=-10\\y_{B'}=-3.\left(-1\right)+\left(1-\left(-3\right)\right).3=15\end{matrix}\right.\) \(\Rightarrow B'\left(-10;15\right)\)

\(\Rightarrow\overrightarrow{A'B'}=\left(-9;6\right)=3\left(-3;2\right)\)

Phương trình A'B':

\(2\left(x+1\right)+3\left(y-9\right)=0\Leftrightarrow2x+3y-25=0\)

Bình luận (0)
AN
24 tháng 10 2021 lúc 11:37

Câu 46 í, phải là tam giác OED mới đúng chứ nhỉundefined

Bình luận (0)
PT
Xem chi tiết
H24
Xem chi tiết
SL
Xem chi tiết
HP
11 tháng 9 2021 lúc 7:02

Biểu thức tọa độ của phép tịnh tiến \(T_{\vec{a}}\):

\(\left\{{}\begin{matrix}x'=x+2\\y'=y-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=x'-2\\y=y'+1\end{matrix}\right.\)

Vì \(M\left(x;y\right)\in C\)\(\left(x-1\right)^2+\left(y+5\right)^2=8\)

\(\Leftrightarrow\left(x'-3\right)^2+\left(y'+6\right)^2=8\)

\(\Leftrightarrow M'\left(x';y'\right)\in\left(C'\right):\left(x-3\right)^2+\left(y+6\right)^2=8\)

Vậy ảnh của \(\left(C\right)\) là \(\left(x-3\right)^2+\left(y+6\right)^2=8\)

Bình luận (0)
NT
Xem chi tiết
NL
21 tháng 12 2020 lúc 15:48

Đường tròn ngoại tiếp tam giác ABC là ảnh của đường tròn (T) qua phép vị tự tâm O tỉ số \(k=2\)

\(\Rightarrow\) Phương trình đường tròn ngoại tiếp tam giác:

\(\left(x-2\right)^2+\left(y+1\right)^2=25\)

(Tọa độ tâm nhân 2 lần và bán kính nhân 2 lần)

Bình luận (0)
H24
Xem chi tiết
NT
16 tháng 9 2022 lúc 7:26

Câu 2: 

\(\left(x+1\right)^2+\left(y-2\right)^2=9\)

=>R=3 và I(-1;2)

Tọa độ I' là:

x=-1+1=0 và y=2-2=0

=>Phương trình (C') là: x^2+y^2=9

Câu 3: 

\(V_{\left(O;-2\right)}\left(C\right)=\left(C'\right)\)

\(x^2+y^2-2x-8=0\)

=>x^2-2x+1+y^2=9

=>(x-1)^2+y^2=9

=>R=3 và I(1;0)

Tọa độ I' là:

\(\left\{{}\begin{matrix}x=1\cdot\left(-2\right)=-2\\y=0\cdot\left(-2\right)=0\end{matrix}\right.\)

Độ dài R' là:

\(R=3\cdot\left|-2\right|=6\)

Tọa độ (C') là:

\(\left(x+2\right)^2+y^2=36\)

Bình luận (0)
H24
Xem chi tiết
NT
16 tháng 9 2022 lúc 7:24

Câu 1: 

\(\left(x-2\right)^2+\left(y-2\right)^2=16\)

=>R=4 và I(2;2)

Tọa độ I1 là:

\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\cdot2=1\\y=\dfrac{1}{2}\cdot2=1\end{matrix}\right.\)

Tọa độ I2 là:

x=1-1=0 và y=1+2=3

Tọa độ (C') là:

\(\left(x-0\right)^2+\left(y-3\right)^2=\left(4\cdot\dfrac{1}{2}\right)^2=4\)

=>x^2+(y-3)^2=16

Bình luận (0)
H24
15 tháng 4 2017 lúc 18:19

\(\left\{{}\begin{matrix}A=\left(a^4+b^4\right)\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left[\dfrac{\left(a+b\right)^2}{2}\right]^2}{2}\ge\dfrac{\left[\dfrac{4ab}{2}\right]^2}{2}\\B=\left(c^4+d^4\right)\ge\left(c^2+d^2\right)^2\ge\dfrac{\left[\dfrac{\left(c+d\right)^2}{2}\right]^2}{2}\ge\dfrac{\left[\dfrac{4cd}{2}\right]^2}{2}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}A\ge\dfrac{\left(2ab\right)^2}{2}\\B\ge\dfrac{\left(2cd\right)^2}{2}\end{matrix}\right.\)(1)

\(\left\{{}\begin{matrix}A\ge0\\B\ge0\end{matrix}\right.\)(2)

(1) và (2) \(\Rightarrow A+B\ge\dfrac{\left(2ab\right)^2+\left(2cd\right)^2}{2}\ge\dfrac{2\left(4abcd\right)}{2}=4abcd\)

đẳng thức khi a=b=c=d

Bình luận (5)
LF
15 tháng 4 2017 lúc 18:22

Ta có BĐT \(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)

Đẳng thức xảy ra khi \(\left(a-b\right)^2=0\Rightarrow a=b\)

Vậy ta có: \(a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\)

\(c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\)

Cộng theo vế 2 BĐT trên ta có:

\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left[\left(ab\right)^2+\left(cd\right)^2\right]\)

Lại có: \(\left(ab\right)^2+\left(cd\right)^2\ge2\sqrt{\left(ab\right)^2\left(cd\right)^2}=2abcd\)

\(\Rightarrow2\left[\left(ab\right)^2+\left(cd\right)^2\right]\ge2\cdot2abcd=4abcd\)

\(\Rightarrow VT=a^4+b^4+c^4+d^4\ge4abcd=VP\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a^4=b^4\\c^4=d^4\\\left(ab\right)^2=\left(cd\right)^2\end{matrix}\right.\Rightarrow\)\(\left\{{}\begin{matrix}a=b\\c=d\\ab=cd\end{matrix}\right.\)\(\Rightarrow a=b=c=d\)

Bình luận (3)
LF
15 tháng 4 2017 lúc 18:09

giá mà chi a,b,c,d dương

Bình luận (5)
NP
Xem chi tiết
NP
Xem chi tiết