Cho biểu thức A =\(\dfrac{x-2}{x+1}\)và B =\(\dfrac{3}{x-2}+\dfrac{6-5x}{4-x^2}+\dfrac{2x}{x+2}\)với x\(\ne\pm2\) x\(\ne-1\)
a,Tính giá trị của A khi x =1
b,Chứng minh B =\(\dfrac{2x}{x-2}\)
c,Đặt P =A.B .Tìm x để P\(\le\) 2
Cho biểu thức A =\(\dfrac{x-2}{x+1}\)và B =\(\dfrac{3}{x-2}+\dfrac{6-5x}{4-x^2}+\dfrac{2x}{x+2}\)với x\(\ne\pm2\) x\(\ne-1\)
a,Tính giá trị của A khi x =1
b,Chứng minh B =\(\dfrac{2x}{x-2}\)
c,Đặt P =A.B .Tìm x để P\(\le\) 2
a: Khi x=1 thì\(P=\dfrac{1-2}{1+2}=\dfrac{-1}{2}\)
b: \(=\dfrac{3x+6+5x-6+2x^2-4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2+4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x}{x-2}\)
c: \(P=A\cdot B=\dfrac{2x}{x-2}\cdot\dfrac{x-2}{x+1}=\dfrac{2x}{x+1}\)
\(P-2=\dfrac{2x-2x-2}{x+1}=\dfrac{-2}{x+1}\)
P<=2
=>x+1>0
=>x>-1
P(x)=x^4+x^3-x^2-2x-2/x^4+2x^3-x^2-4c-2
phân tích nhân tử P(x)và chứng minh P(x)chia hết cho 6 với mọi x thuộc Z
\(P\left(x\right)=\dfrac{x^4-2x^2+x^3-2x+x^2-2}{x^4-2x^2+2x^3-4x+x^2-2}\)
\(=\dfrac{\left(x^2-2\right)\left(x^2+x+1\right)}{\left(x^2-2\right)\left(x^2+2x+1\right)}=\dfrac{x^2+x+1}{x^2+2x+1}\)
\(\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-2\sqrt{2}\)
\(\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-2\sqrt{2}=\dfrac{\sqrt{8}-\sqrt{7}}{\left(\sqrt{8}-\sqrt{7}\right)\left(\sqrt{8}+\sqrt{7}\right)}+\sqrt{25.7}-2\sqrt{2}\)
\(=\dfrac{\sqrt{8}-\sqrt{7}}{1}+5\sqrt{7}-2\sqrt{2}=2\sqrt{2}-\sqrt{7}+5\sqrt{7}-2\sqrt{2}\)
\(=4\sqrt{7}\)
1/x(x+3) + 1/(x+3)(x+6) +1/(x+6)(x+9) + 1/(x+9)(x+12) =1/16
\(\Leftrightarrow\dfrac{3}{x\left(x+3\right)}+\dfrac{3}{\left(x+3\right)\left(x+6\right)}+...+\dfrac{3}{\left(x+9\right)\left(x+12\right)}=\dfrac{3}{16}\)
=>\(\dfrac{1}{x}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+6}+...+\dfrac{1}{x+9}-\dfrac{1}{x+12}=\dfrac{3}{16}\)=>\(\dfrac{1}{x}-\dfrac{1}{x+12}=\dfrac{3}{16}\)
=>\(\dfrac{x+12-x}{x\left(x+12\right)}=\dfrac{3}{16}\)
=>12/x(x+12)=3/16
=>4/x(x+12)=1/16
=>x(x+12)=64
=>x^2+12x-64=0
=>x^2+16x-4x-64=0
=>(x+16)(x-4)=0
=>x=4 hoặc x=-16
Bài1. Cho biểu thức và với
a) Rút gọn A;
b) Với P = A.B, tìm x để
c) Tìm x để B < 1
d) Tìm số nguyên x để P = A.B là số nguyên.
Bài 2. Cho biểu thức
a) Rút gọn P;
b) Tìm các giá trị của x để
c) Tìm các giá trị nguyên của x để A > 1
Bài 3. Cho biểu thức
a) Tìm điều kiện xác định của P;
b) Rút gọn biểu thức P.
c) Tìm các giá trị của x để
d) Tìm các giá trị của x để P > 0; P < 0.
a: \(=\dfrac{x^2+5x-36-x^2-4x}{\left(x-4\right)\left(x+4\right)}\cdot\dfrac{\left(x-4\right)\left(x+4\right)}{x-5}\)
\(=\dfrac{x-36}{x-5}\)
b: |x-1|=3
=>x-1=3 hoặc x-1=-3
=>x=4(loại) hoặc x=-2(nhận)
Khi x=-2 thì \(A=\dfrac{-2-36}{-2-5}=\dfrac{-38}{-7}=\dfrac{38}{7}\)
c: Đê A nguyên thì x-5-31 chia hết cho x-5
=>\(x-5\in\left\{1;-1;31;-31\right\}\)
=>\(x\in\left\{6;36;-26\right\}\)
Giúp minh b2 vs b3 với ạ:< Cần gấp:')
2.
a.
\(P=\dfrac{1}{x+5}+\dfrac{2}{x-5}-\dfrac{2\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{1}{x+5}+\dfrac{2}{x-5}-\dfrac{2}{x-5}=\dfrac{1}{x+5}\)
b.
\(P=-3\Rightarrow\dfrac{1}{x+5}=-3\Rightarrow x+5=-\dfrac{1}{3}\)
\(\Rightarrow x=-\dfrac{16}{3}\)
Thay vào bấm máy ta được \(Q=529\)
3.
a. \(P=\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}+\dfrac{18}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3\left(x-3\right)+x+3+18}{\left(x-3\right)\left(x+3\right)}=\dfrac{4x+12}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{4}{x-3}\)
b.
\(P=4\Rightarrow\dfrac{4}{x-3}=4\Rightarrow x-3=1\)
\(\Rightarrow x=4\)
có ai làm giúp mình câu b và c được không?
mình đang cần gấp ạ
a: \(=\dfrac{2x+x-2-x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
b: x^2-x-6=0
=>(x-3)(x+2)=0
=>x=3(nhận) hoặc x=-2(loại)
Khi x=3 thì \(E=\dfrac{2}{3+2}=\dfrac{2}{5}\)
c: Để E nguyên thì \(x+2\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{-1;-3;0;-4\right\}\)
Tìm các giá trị nguyên x để biểu thức A= 3x+1/x+2 nhận giá trị nguyên
`A=[3x+1]/[x+2]=[3x+6-5]/[x+2]=3-5/[x+2]`
Để `A` nhận giá trị nguyên thì `3-5/[x+2] in ZZ`
`=>x+2 in Ư_5`
Mà `Ư_5 ={+-1;+-5}`
`@x+2=1=>x=-1`
`@x+2=-1=>x=-3`
`@x+2=5=>x=3`
`@x+2=-5=>x=-7`
Đề bài: Cho tam giác ABC vuông tại A. Trung tuyến AM. D là trung điểm của AB. Gọi E là điểm đối xứng với M qua D, F là điểm đối xứng với A qua M. a) Tứ giác AEMC là hình gì? Vì sao? b) Chứng minh: tứ giác AEMC là hình chữ nhật. c) Biết AB= 3cm, BC=5cm. Tính diện tích tứ giác ABFC
a: Xét ΔBAC có BD/BA=BM/BC
nên MD//AC và MD=1/2AC
=>ME//AC và ME=AC
=>AEMC là hình bình hành
b: Xét tứ giác ABFC có
M là trung điểm chung của AF và BC
góc BAC=90 độ
Do đó: ABFC là hình chữ nhật
c: AC=căn(5^2-3^2)=4cm
S=3*4=12cm2