Bài 3: Nhị thức Niu-tơn

KR
Xem chi tiết
NL
5 tháng 3 2022 lúc 16:25

Xét khai triển:

\(\left(1+x\right)^n=C_n^0+C_n^1x+C_n^2x^2+...+C_n^nx^n\)

\(\Leftrightarrow x\left(1+x\right)^n=C_n^0x+C_n^1x^2+C_n^2x^3+...+C_n^nx^{n+1}\)

Đạo hàm 2 vế:

\(\left(1+x\right)^n+nx\left(1+x\right)^{n-1}=C_n^0+2C_n^1x+3C_n^2x^2+...+\left(n+1\right)C_n^nx^n\)

Thay \(x=1\)

\(\Rightarrow2^n+n.2^{n-1}=1+2C_n^1+3C_n^2+...+\left(n+1\right)C_n^n\)

\(\Rightarrow2^{n-1}\left(2+n\right)-1=111\)

\(\Rightarrow2^{n-1}\left(2+n\right)=112=2^4.7\)

\(\Rightarrow n=5\)

\(\left(x^2+\dfrac{2}{x}\right)^5=\sum\limits^5_{k=0}C_5^kx^{2k}.2^{5-k}.x^{k-5}=\sum\limits^5_{k=0}C_5^k.2^{5-k}.x^{3k-5}\)

\(3k-5=4\Rightarrow k=3\Rightarrow\) hệ số: \(C_5^3.2^2\)

Bình luận (0)
HN
Xem chi tiết
NT
4 tháng 1 2022 lúc 22:04

Chọn B

Bình luận (0)
DM
Xem chi tiết
HP
31 tháng 12 2021 lúc 22:10

\(\left(3+2x\right)^8=\sum\limits^8_{k=0}C^k_8.3^{8-k}.2^k.x^k\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^6\) là \(C^6_8.3^{8-6}.2^6=16128\)

Bình luận (0)
DN
Xem chi tiết
HP
30 tháng 12 2021 lúc 17:33

\(\left(2x+1\right)^{15}=\sum\limits^{15}_{k=0}C^k_{15}.2^k.x^k\)

\(\Rightarrow k=7\)

\(\Rightarrow\) Số hạng chứa \(x^7\) là \(C^7_{15}.2^7.x^7=823680x^7\)

Bình luận (0)
NL
Xem chi tiết
HP
26 tháng 12 2021 lúc 10:28

\(\left(a+b\right)^{2021}=\sum\limits^{2021}_{k=0}C^k_{2021}.a^{2021-k}.b^k\)

\(\left\{{}\begin{matrix}2021-k=2020\\k=21\end{matrix}\right.\Leftrightarrow k=21\)

Hệ số của \(a^{2000}b^{21}\) là: \(C^{21}_{2021}\)

Bình luận (0)
NM
Xem chi tiết
NM
23 tháng 12 2021 lúc 17:47

A mình biết làm rồi nên thôi ạ. Cảm ơn mọi người!!! Cứ đăng câu hỏi xong lại biết làm hic

Bình luận (0)
LL
Xem chi tiết
LH
23 tháng 12 2021 lúc 16:56

\(C^n_n+C^{n-1}_n+C^{n-2}_n=37\)

\(\Leftrightarrow1+\dfrac{n!}{\left(n-1\right)!}+\dfrac{n!}{\left(n-2\right)!2!}=37\)

\(\Leftrightarrow1+n+\dfrac{n\left(n-1\right)}{2}=37\)

\(\Rightarrow n=8\)

\(P=\left(2+5x\right)\left(1-\dfrac{x}{2}\right)^8=\left(2+5x\right).\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{x}{2}\right)^k\right)\)

\(=\left(2+5x\right).\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\)

\(=2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)+5x\)\(\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\)

\(=2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)+5\)\(\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^{k+1}\right)\)

Số hạng chứa \(x^3\) trong \(2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\) là \(2C^3_8.\left(-\dfrac{1}{2}\right)^3x^3\)

Số hạng chứa \(x^3\) trong \(5\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^{k+1}\right)\) là \(5C^2_8.\left(-\dfrac{1}{2}\right)^2x^3\)

Vậy số hạng chứa x3 trong P là:\(\left[2.C^3_8\left(-\dfrac{1}{2}\right)^3+5C^2_8\left(-\dfrac{1}{2}\right)^2\right]x^3\)

Bình luận (1)
LH
23 tháng 12 2021 lúc 15:01

Ý A

\(S=3^2.C^2_{2019}+3^3.C^3_{2019}+...+3^{2019}.C^{2019}_{2019}=C^0_{2019}.1^{2019}.3^0+C_{2019}^1.1^{2018}.3^1+C^2_{2019}.1^{2017}.3^3+C^3_{2019}.1^{2016}.3^3+...+C^{2019}_{2019}.3^{2019}-6058\)

\(=\left(1+3\right)^{2019}-6058=4^{2019}-6058\)

Bình luận (0)
XG
Xem chi tiết
NT
21 tháng 12 2021 lúc 9:11

Chọn C

Bình luận (0)
AM
21 tháng 12 2021 lúc 9:13

Số hạng tổng quát trong khai triển của \(\left(\dfrac{1}{x}+2x^3\right)^8\)là \(C_8^k2^kx^{3k}x^{-\left(8-k\right)}\)\(\Leftrightarrow C_8^k2^kx^{4k-8}\)

Ta có: 4=4k-8\(\Leftrightarrow k=3\) 

Hệ số của xtrong khai triển là: \(C_8^3.2^3=448\)

Đáp án C

Bình luận (0)