Bài 3: Nhị thức Niu-tơn

LL

Biết rằng \(n\in N\), n ≥ 2 thỏa mãn \(C^n_n+C^{n-1}_n+C^{n-2}_n=37\). Hãy tìm số hạng chứa \(x^3\) trong khai triển của P = (2+5x) \(\left(1-\dfrac{x}{2}\right)^n\).

 

LH
23 tháng 12 2021 lúc 16:56

\(C^n_n+C^{n-1}_n+C^{n-2}_n=37\)

\(\Leftrightarrow1+\dfrac{n!}{\left(n-1\right)!}+\dfrac{n!}{\left(n-2\right)!2!}=37\)

\(\Leftrightarrow1+n+\dfrac{n\left(n-1\right)}{2}=37\)

\(\Rightarrow n=8\)

\(P=\left(2+5x\right)\left(1-\dfrac{x}{2}\right)^8=\left(2+5x\right).\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{x}{2}\right)^k\right)\)

\(=\left(2+5x\right).\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\)

\(=2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)+5x\)\(\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\)

\(=2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)+5\)\(\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^{k+1}\right)\)

Số hạng chứa \(x^3\) trong \(2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\) là \(2C^3_8.\left(-\dfrac{1}{2}\right)^3x^3\)

Số hạng chứa \(x^3\) trong \(5\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^{k+1}\right)\) là \(5C^2_8.\left(-\dfrac{1}{2}\right)^2x^3\)

Vậy số hạng chứa x3 trong P là:\(\left[2.C^3_8\left(-\dfrac{1}{2}\right)^3+5C^2_8\left(-\dfrac{1}{2}\right)^2\right]x^3\)

Bình luận (1)

Các câu hỏi tương tự
TT
Xem chi tiết
H24
Xem chi tiết
KR
Xem chi tiết
TK
Xem chi tiết
MA
Xem chi tiết
TV
Xem chi tiết
PA
Xem chi tiết
MA
Xem chi tiết
LN
Xem chi tiết