Cho tứ diện ABCD có AB = AC = AD và \(\widehat{BAC}=\widehat{BAD}=60^o\) ; \(\widehat{CAD}=90^o\).
Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vectơ AB và IJ.
Cho hình chóp SABCD có đáy là hình thoi cạnh a, góc BAD = 120. Biết SA=SC=a,
SB=SD= 3a/2. Gọi M, I, J lần lượt là trung điểm AB, SD,CD; G là trọng tâm tam giác SAB.
Tính góc giữa hai đường thẳng:
1) SA và DC 2)SB và AD 3) SM và BD 4) BG và IJ
giúp mình câu số 4 với
Cho hình hộp ABCD.A'B'C'D' có các cạnh bằng a, \(\widehat{DAA'}\)=120o . Gọi \(\varphi=\left(\widehat{AB,CD'}\right)\). Khẳng định nào sau đây đúng
A. φ=\(90^o\)
B. φ=\(60^o\)
C. φ=\(30^o\)
D. φ=\(45^o\)
Lời giải:
\(\varphi=(AB,CD')=(AB, BA')=\widehat{ABA'}=\frac{1}{2}\widehat{ABB'}=\frac{1}{2}.120^0=60^0\)
Đáp án B.
Cho hình chóp S.ABC có SA=3, SB=4, SC=5, ∠ASB =∠ASC =∠BSC = 60o. Gọi φ là góc giữa SA và BC. Tính cosφ
A. cosφ=\(\dfrac{\sqrt{21}}{42}\)
B. cosφ=\(\dfrac{\sqrt{21}}{21}\)
C. cosφ=\(\dfrac{\sqrt{3}}{3}\)
D. cosφ=\(\dfrac{\sqrt{3}}{6}\)
Gọi HH là trung điểm của BCBC suy ra
SH⊥(ABC)⇒SH=√SB2−BH2=a√3\2
ˆ(SA,(ABC))=ˆ(SA,HA)=ˆSAH=α
cho hình chóp s.abcd có đáy abcd là hình vuông tâm o cạnh a, SA vuông góc với đáy; \(SA=a\sqrt{3}\) . tính cosin góc giữa 2 đg thg SB và AC?
lại là chuyên mục toán hình :)) ( P/s hình t lấy từ gg xuống vì trên này khó vẽ... )
Ta có: \(\cos\left(\widehat{SB,AC}\right)=\left|\cos\left(\overrightarrow{SB},\overrightarrow{AC}\right)\right|=\dfrac{\left|\overrightarrow{SB}.\overrightarrow{AC}\right|}{SB.AC}\)
Mà: \(\overrightarrow{SB}.\overrightarrow{AC}=\left(\overrightarrow{SA}+\overrightarrow{AB}\right).\overrightarrow{AC}=\overrightarrow{SA}.\overrightarrow{AC}+\overrightarrow{AB}.\overrightarrow{AC}\)
\(=SA.AC.\cos\left(\overrightarrow{SA},\overrightarrow{AC}\right)+AB.AC.\cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)\)
thay số các kiểu ta đc \(\overrightarrow{SB}.\overrightarrow{AC}=a^2\) (1)
Hoàn toàn dễ dàng tính được \(SB=\sqrt{SA^2+AB^2}=2a\) ( tam giác SAB vuông tại A )
\(\Rightarrow SB.AC=2\sqrt{2}a^2\) (2)
Từ (1),(2) \(\Rightarrow\cos\left(\widehat{SB,AC}\right)=\dfrac{1}{2\sqrt{2}}\)
\(\Rightarrow\left(\widehat{SB,AC}\right)\simeq69^0\)
có 17' nữa t định ghi mà sợ ông kêu số xấu sai kết quả :)))
cho hình chóp s.abc có sa=sb=sc=a và tam giác abc đều cạnh \(a\sqrt{2}\). tính cosin góc giữa SC và AB?
vẫn hình vẽ ấy lập luận tương tự
Gọi M là trung điểm của AB ta có:
AB _|_ SM ( tam giác SAB cân tại S ) (1)
AB _|_ CM ( tam giác ABC đều ) (2)
Từ (1),(2) suy ra AB vuông góc SCM
suy ra góc (AB,SC)=90
cho hình chóp s.abcd có đáy abcd là hình vuông cạnh a, cạnh bên đều bằng \(\dfrac{a\sqrt{6}}{2}\). gọi m, n trung điểm ad và sd. tính số đo của góc \(\left(MN,SC\right)\)?
hình vẽ chóp tứ giác đều t lấy từ mạng xuống bạn tự xác định thêm M và N vào hình rồi đọc lời giải nhé! ( T hết pin điện thoại )
Dễ thấy MN//SA ( tính chất đường trung bình ) thực chất ta đi tìm góc (MN,SC) là đi tìm góc (SA,SC)
Ta lại có \(AC=a\sqrt{2}\) ( đường chéo hình vuông ) \(\Rightarrow AO=\dfrac{a\sqrt{2}}{2}\)
vì \(SO\perp\left(ABCD\right)\Rightarrow SO\perp AO\Rightarrow\Delta SAO\perp O\)
\(\Rightarrow SO=\sqrt{SA^2-AO^2}=\sqrt{\left(\dfrac{a\sqrt{6}}{2}\right)^2-\left(\dfrac{a\sqrt{2}}{2}\right)^2}=a\)
\(\Rightarrow\cos\left(SA,SO\right)=\dfrac{SO}{SA}=\dfrac{\sqrt{6}}{3}\Rightarrow\widehat{ASO}\simeq35^015^'\)
\(\Rightarrow\widehat{ASC}\simeq70^031^'\)