Chắc chắn không viết được rồi bạn. Sẽ có vô số cạnh đáy thỏa mãn.
Bài toán chỉ thực hiện được khi đó là 1 tam giác đặc biệt, ví dụ đó là cạnh đáy của 1 tam giác cân
Nếu đó là tam giác cân thì hãy viết pt đường phân giác hợp bởi 2 cạnh bên. Khi đó cạnh đáy sẽ vuông góc phân giác đó nên biết vtpt, biết 1 điểm thuộc cạnh, ta dễ dàng viết được phương trình đường thẳng
Tìm M thuộc denta x+y-2= 0 sao cho (MA+MB)min với A(-1;1),B(0;3)
Thay tọa độ A và B vào pt \(\Delta\) được 2 giá trị trái dấu \(\Rightarrow A;B\) nằm khác phía so với \(\Delta\)
\(\Rightarrow MA+MB\) nhỏ nhất khi và chỉ khi M nằm trên giao điểm của đường thẳng AB và \(\Delta\)
\(\overrightarrow{AB}=\left(1;2\right)\Rightarrow\) đường thẳng AB nhận (2;-1) là 1 vtpt
Phương trình AB: \(2\left(x+1\right)-1\left(y-1\right)=0\Leftrightarrow2x-y+3=0\)
Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}2x-y+3=0\\x+y-2=0\end{matrix}\right.\) \(\Rightarrow M\left(-\dfrac{1}{3};\dfrac{7}{3}\right)\)
Cho tam giác ABC biết \(A(1;4);B(3;-1);C(6;-2)\). Viết phương trình đường thẳng d qua C và chia tam giác thành hai phần, sao cho phần chứa điểm A có diện tích gấp đôi phần chứa điểm B.
Gọi giao điểm của d và AB là D
\(\Rightarrow S_{ACD}=2S_{BCD}\)
\(\Rightarrow AD=2BD\Rightarrow\overrightarrow{AD}=\dfrac{2}{3}\overrightarrow{AB}\)
Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(2;-5\right)\\\overrightarrow{AD}=\left(x-1;y-4\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=\dfrac{4}{3}\\y-4=-\dfrac{10}{3}\end{matrix}\right.\) \(\Rightarrow D\left(\dfrac{7}{3};\dfrac{2}{3}\right)\) \(\Rightarrow\overrightarrow{DC}=\left(\dfrac{11}{3};-\dfrac{8}{3}\right)=\dfrac{1}{3}\left(11;-8\right)\)
Đường thẳng d nhận \(\left(8;11\right)\) là 1 vtpt
Phương trình d:
\(8\left(x-6\right)+11\left(y+2\right)=0\Leftrightarrow8x+11y-26=0\)
Trong mặt phẳng tọa độ Oxy cho điểm M(1,-1)và hai đường thẳng có phương trình (d1):x - y - 1 = 0 và (d2) 2x+y-5=0. Gọi A là giao điểm của 2 đường thẳng trên . Biết rằng có 2 đường thẳng (d) đi qua M cắt 2 đường thẳng trên tại B,C sao cho tam giác ABC có BC=3AB .Tìm phương trình đường thẳng của 2 đường thẳng đó
Tìm hình chiếu vuông góc của điểm M ( 3;1) trên đường thẳng \(\Delta:\left\{{}\begin{matrix}x=-2-2t\\y=1+2t\end{matrix}\right.\)
VTCP của \(\Delta\) là \(\overrightarrow{u}=\left(-2;2\right)=2\left(-1;1\right)\).
Gọi \(H\) là hình chiếu vuông góc của \(M\) trên \(\Delta\)
\(\Rightarrow\Delta\) vuông góc \(MH\) \(\Rightarrow\overrightarrow{u}.\overrightarrow{MH}=0\)
Do \(H\in\Delta\Rightarrow H\left(-2-2t;1+2t\right)\Rightarrow\overrightarrow{MH}=\left(-5-2t;2t\right)\)
Ta có: \(\overrightarrow{u}.\overrightarrow{MH}=0\Leftrightarrow-1\left(-5-2t\right)+1.2t=0\Leftrightarrow5+4t=0\Leftrightarrow t=-\dfrac{5}{4}\)
\(\Rightarrow H\left(\dfrac{1}{2};-\dfrac{3}{2}\right)\).
(d): y=ax+b
Vì (d) đi qua điểm I(-1;2) nên: -a+b=2
Mà (d) vuông góc với đth: y=\(\dfrac{2}{3}x+\dfrac{7}{3}\) nên: a.\(\dfrac{2}{3}\)= -1 => a=\(\dfrac{-3}{2}\)
=> b=\(\dfrac{1}{2}\)
Do đó: (d): y=\(\dfrac{-3}{2}\)x+\(\dfrac{1}{2}\)
Cho tam giác ABC có A( -3; 7) ; B( 0; 8) ; C(-1; -4).
a) Viết phương trình của đường thẳng AB.
b) Tính độ dài đường cao kẻ từ C.
c) Tính \(\widehat{C}\) của \(\Delta\)ABC
a, \(\overrightarrow{AB}=\left(3;1\right)\)
Phương trình đường thẳng AB:
\(\dfrac{x+3}{3}=\dfrac{y-7}{1}\Leftrightarrow x-3y+24=0\)
b, \(d\left(C,AB\right)=\dfrac{\left|-1-3.\left(-4\right)+24\right|}{\sqrt{1^2+3^2}}=\dfrac{7\sqrt{10}}{2}\)
c, \(AB=\sqrt{10};BC=\sqrt{145};CA=\sqrt{137}\)
Theo định lí hàm số cosin: \(cosC=\dfrac{BC^2+AC^2-AB^2}{2.BC.AC}=...\)