tìm GTLN, GTNN
tìm GTLN, GTNN
\(y=-sin^2x-cosx+2 \\=cos^2x-cosx+1=(cosx-\dfrac{1}{2})^2+\dfrac{3}{4}\ge\dfrac{3}{4} \\Đẳng\ thức\ xảy\ ra\ khi\ x=\dfrac{\pi}{3}+2k\pi\ (k\ nguyên) \\Vậy\ Miny=\dfrac{3}{4}\ (khi\ x=\dfrac{\pi}{3}+2k\pi\ (k\ nguyên)) \\y=-sin^2x-cosx+2 \\=cos^2x-cosx+1\le1-(-1)+1=3 \\Đẳng\ thức\ xảy\ ra\ khi\ x=\pi+2k\pi\ (k\ nguyên) \\Vậy\ Maxy=3\ (khi\ x=\pi+2k\pi\ (k\ nguyên)).\)
tìm txđ
ĐKXĐ: \(\left\{{}\begin{matrix}2x< >k\Pi\\1-cos^2x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< >\dfrac{k\Pi}{2}\\cos^2x< 1\end{matrix}\right.\Leftrightarrow x< >\dfrac{k\Pi}{2}\)
tìm txđ
ĐKXĐ: \(\dfrac{cosx-2}{1-sinx}>=0\)
\(\Leftrightarrow1-sinx< 0\)(Vì cosx-2<0)
=>sin x>1(vô lý)
tìm tập xđ
ĐKXĐ: \(\left\{{}\begin{matrix}2x< >\dfrac{\Pi}{2}+k\Pi\\\sin2x< >-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\Pi}{4}+\dfrac{k\Pi}{2}\\2x\ne-\dfrac{\Pi}{2}+k2\Pi\end{matrix}\right.\Leftrightarrow x\notin\left\{\dfrac{\Pi}{4}+\dfrac{k\Pi}{2};-\dfrac{\Pi}{4}+k\Pi\right\}\)
ĐKXĐ: \(\left\{{}\begin{matrix}\tan^2x< >1\\\dfrac{2-\cos x}{1+\cos x}>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm\dfrac{\Pi}{4}+k\Pi\\\cos x< =2\end{matrix}\right.\)
\(\Leftrightarrow x\ne\pm\dfrac{\Pi}{4}+k\Pi\)
2)\(y=1-2.sin\dfrac{x}{2}.cos\dfrac{x}{2}+cos2x=1-sinx+\left(1-2sin^2x\right)\)
\(=-2sin^2x-sinx+2\)
Đặt \(t=sinx,t\in\left[-1;1\right]\)
Xét \(f\left(t\right)=-2t^2+2-t\)
Vẽ BBT(dạng như này, lười quá)
\(t\) \(-1\) \(-\dfrac{1}{4}\) \(1\)
\(f\left(t\right)\) \(1\) \(\dfrac{17}{8}\) \(-1\)
\(miny=minf\left(t\right)=-1\Leftrightarrow sinx=-1\)\(\Leftrightarrow x=-\dfrac{\pi}{2}+k2\pi\)
\(maxy=maxf\left(t\right)=\dfrac{17}{8}\Leftrightarrow sinx=-\dfrac{1}{4}\)\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(-\dfrac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\dfrac{1}{4}\right)+k2\pi\end{matrix}\right.\)
1)\(y=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x-4+cos2x\)
\(=-3-\dfrac{1}{2}sin^22x+cos2x\)
\(=-\dfrac{1}{2}\left(1-cos^22x\right)-3+cos2x\)
\(=\dfrac{1}{2}cos^22x+cos2x-\dfrac{7}{2}\)
Đặt \(t=cos2x,t\in\left[-1;1\right]\)
Xét \(f\left(t\right)=\dfrac{1}{2}t^2+t-\dfrac{7}{2}\), \(I\left(-1;-4\right)\)
Vẽ BBT, khoảng từ \(\left(-1;+vc\right)\) hàm \(f\left(t\right)\) đồng biến
\(miny=\min\limits_{\left[-1;1\right]}f\left(t\right)=-4\Leftrightarrow t=-1\Leftrightarrow cos2x=-1\) \(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)
\(maxy=\max\limits_{\left[-1;1\right]}f\left(t\right)=-2\Leftrightarrow t=1\Leftrightarrow cos2x=1\)\(\Leftrightarrow x=k\pi\)
Vậy...
4)\(y=2\left(\dfrac{1}{2}sin2x-\dfrac{\sqrt{3}}{2}cos2x\right)+1\)\(=2\left(sin2x.cos\dfrac{\pi}{3}-cos2x.sin\dfrac{\pi}{3}\right)+1\)
\(=2sin\left(2x-\dfrac{\pi}{3}\right)+1\)
mà \(-2\le2sin\left(2x-\dfrac{\pi}{3}\right)\le2\)
\(\Leftrightarrow-1\le y\le3\)
\(miny=-1\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=-1\)\(\Leftrightarrow x=-\dfrac{\pi}{12}+k\pi\)
\(maxy=3\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=1\)\(\Leftrightarrow x=\dfrac{5\pi}{12}+k\pi\)
Vậy
3: y=5*(3/5sinx+4/5cosx)-2
=5*sin(x+alpha)-2
-1<=sin(x+alpha)<=1
=>-5<=5*sin(x+alpha)<=5
=>-7<=y<=3
y=-7 khi sin(x+alpha)=-1
=>x+alpha=-pi/2+k2pi
=>x=-pi/2-alpha+k2pi
y=3 khi x+alpha=pi/2+k2pi
=>x=pi/2-alpha+k2pi
7: =>cosx+sinx+1=2y+y*cosx
=>sin x+cosx(1-y)=2y-1
Để phương trình có nghiệm thì 1^2+(1-y)^2>=(2y-1)^2
=>y^2-2y+2>=4y^2-4y+1
=>-3y^2+2y+1>=0
=>-1/3<=y<=1
=>y min=-1/3 và y max=1
Cho mình hỏi hai câu 3 và 7 ạ ,tìm điều kiện xác định ạ
Câu 3 :
Hàm số xác định khi sinx ≥ 0
⇔ \(k2\pi\le x\le\pi+k2\pi\) (nằm ở cung tròn phần dương của đường tròn lượng giác)
Câu 7
Hàm số xác định khi \(tan\left(x+\dfrac{\pi}{4}\right).tan\left(x-\dfrac{\pi}{4}\right)\ne0\)
⇔ \(\left\{{}\begin{matrix}tan\left(x-\dfrac{\pi}{4}\right)\ne0\\tan\left(x+\dfrac{\pi}{4}\right)\ne0\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x-\dfrac{\pi}{4}\ne k\pi\\x+\dfrac{\pi}{4}\ne k\pi\end{matrix}\right.\)⇔ \(x\ne\pm\dfrac{\pi}{4}+k\pi\) với k là số nguyên
Giải giúp em với ạ
giải phương trình : sin2 2x=\(\dfrac{1}{2}\)
Ta có: \(sin^22x=\dfrac{1}{2}\Leftrightarrow\)\(\left[{}\begin{matrix}sin2x=\dfrac{1}{\sqrt{2}}\\sin2x=\dfrac{-1}{\sqrt{2}}\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left[{}\begin{matrix}2x=\dfrac{\pi}{4}+k2\pi\\2x=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\\\left[{}\begin{matrix}2x=\dfrac{-\pi}{4}+k2\pi\\2x=\dfrac{5\pi}{4}+k2\pi\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{\pi}{8}+k\pi\\x=\dfrac{3\pi}{8}+k\pi\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{-\pi}{8}+k\pi\\x=\dfrac{5\pi}{8}+k\pi\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos4x=\dfrac{1}{2}\)
\(\Leftrightarrow cos4x=0\)
\(\Leftrightarrow4x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)