Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

AC

x4-y4
x2-3y2
9(x-y)2-4(x+y)2
(4x2-4x+1)-(x+1)2
x3+27
27x3-0.001
125x3-1


 

H24
27 tháng 8 2021 lúc 17:02

\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(x^2-3y^2=\left(x-\sqrt{3}y\right)\left(x+\sqrt{3}y\right)\)

\(9\left(x-y\right)^2-4\left(x+y\right)^2=\left[3\left(x-y\right)\right]^2-\left[2\left(x+y\right)\right]^2=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]=\left(3x-3y-2x+2y\right)\left(3x-3y+2x+2y\right)=\left(x-y\right)\left(5x-y\right)\)

\(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)

\(27x^3-0,001=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\)

\(125x^3-1=\left(5x-1\right)\left(25x^2+5x+1\right)\)

Bình luận (0)
NT
27 tháng 8 2021 lúc 23:05

a: \(x^4-y^4=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

c: \(9\left(x-y\right)^2-4\left(x+y\right)^2=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)=\left(x-5y\right)\left(5x-y\right)\)

d: \(\left(4x^2-4x+1\right)-\left(x+1\right)^2=\left(2x-1\right)^2-\left(x+1\right)^2\)

\(=\left(2x-1-x-1\right)\left(2x-1+x+1\right)\)

\(=3x\left(x-2\right)\)

e: \(x^3+27=\left(x+3\right)\left(x^2+3x+9\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TJ
Xem chi tiết
CM
Xem chi tiết
H24
Xem chi tiết
HM
Xem chi tiết
LL
Xem chi tiết
TA
Xem chi tiết
TV
Xem chi tiết
DS
Xem chi tiết