Bài 8: Phân tích đa thức thành nhân tử bằng phương pháp nhóm các hạng tử

T0

\(x^2-6x+5=0\)

\(2x^2+7x+9=0\)

\(4x^2-7x+3=0\)

\(2\left(x+5\right)=x^2+5x\)

H24
17 tháng 7 2019 lúc 19:33

\(x^2-6x+5=0\)

<=> \(x^2-x-5x+5=0\)

<=> \(x\left(x-1\right)-5\left(x-1\right)=0\)

<=> \(\left(x-1\right)\left(x-5\right)=0\)

<=> \(\left\{{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

Vậy phương trình có nghiệm là x=1 và x=5

\(2x^2+7x-9=0\) ( nếu là 9 thì ko ra kq đc nên mình đổi thành -9 nha )

<=> \(2x^2-2x+9x-9=0\)

<=> \(2x\left(x-1\right)+9\left(x-1\right)=0\)

<=> \(\left(x-1\right)\left(2x+9\right)=0\)

<=> \(\left\{{}\begin{matrix}x-1=0\\2x+9=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=1\\x=\frac{-9}{2}\end{matrix}\right.\)

\(4x^2-7x+3=0\)

<=> \(4x^2-4x-3x+3=0\)

<=>\(4x\left(x-1\right)-3\left(x-1\right)=0\)

<=> \(\left(x-1\right)\left(4x-3\right)=0\)

<=> \(\left\{{}\begin{matrix}x-1=0\\4x-3=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)

\(2\left(x+5\right)=x^2+5x\)

<=> \(2\left(x+5\right)-x^2-5x=0\)

<=>\(2\left(x+5\right)-x\left(x+5\right)=0\)

<=>\(\left(x+5\right)\left(2-x\right)=0\)

<=>\(\left\{{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Bình luận (0)