Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

HZ

Tính:

\(\left(\dfrac{3\sqrt{3}-2\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{3\sqrt{2}+2\sqrt{3}}{\sqrt{3}+\sqrt{2}}\right)\cdot\dfrac{5-2\sqrt{6}}{4}\)

NT
8 tháng 2 2021 lúc 23:17

Ta có: \(\left(\dfrac{3\sqrt{3}-2\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{3\sqrt{2}+2\sqrt{3}}{\sqrt{3}+\sqrt{2}}\right)\cdot\dfrac{5-2\sqrt{6}}{4}\)

\(=\left(\dfrac{\left(\sqrt{3}-\sqrt{2}\right)\left(3+\sqrt{6}+2\right)}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}\right)\cdot\dfrac{5-2\sqrt{6}}{4}\)

\(=\left(5+\sqrt{6}+\sqrt{6}\right)\cdot\dfrac{5-2\sqrt{6}}{4}\)

\(=\dfrac{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)}{4}\)

\(=\dfrac{25-24}{4}=\dfrac{1}{4}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TT
Xem chi tiết
PN
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết
KG
Xem chi tiết