\(\left(12x-5\right).\left(4x-1\right)+\left(3x-7\right).\left(1-16x\right)=81\)
\(48x^2-12x-20x+5+3x-48x^2-7=112x=81\)
\(83x-2=81\)
\(83x=83\)
=>\(x=1\)
\(\left(12x-5\right).\left(4x-1\right)+\left(3x-7\right).\left(1-16x\right)=81\)
\(48x^2-12x-20x+5+3x-48x^2-7=112x=81\)
\(83x-2=81\)
\(83x=83\)
=>\(x=1\)
Tìm \(x\), biết :
a) \(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)
b) \(x\left(5-2x\right)+2x\left(x-1\right)=15\)
Tìm x :
\(3x\cdot\left(x-2\right)-2x\cdot\left(2x-1\right)=\left(1-x\right)\cdot\left(1+x\right)\)
\(\left(5x+3\right)\cdot\left(3x-5\right)-\left(x-2\right)\cdot\left(2x+1\right)=6x\cdot\left(3x+1\right)-x^2\)
\(\left(2x-1\right)\cdot\left(2x+1\right)-3\cdot\left(x-1\right)=\left(1-4x\right)\cdot\left(1-x\right)\)
\(\left(2x^2+1\right)\cdot\left(3x^2-1\right)-\left(4x^2-3\right)\cdot\left(x^2+1\right)=x\cdot\left(2x^3+1\right)\)
GIÚP MK ĐI MAI MK PHẢI NỘP RÙI !
Tìm x biết:
a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x+5\right)=x+2-\left(x-5\right)\)
b) \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
Rút gọn biểu thức:
A=\(2x\left(x-2\right)-x\left(2x-3\right)\)
B=\(\left(x-1\right)\left(2x+1\right)-\left(x^2-2x-1\right)\)
C=\(\left(x+y\right)\left(x^2-xy+y^2\right)-x^3\)
D=\(\left(12x-3\right)\left(x+4\right)-x\left(2x+7\right)\)
E=\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
Chứng tỏ rằng các đa thức sau không phụ thuộc vào biến:
a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)
b) \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
c) \(\left(x^2+2x+3\right)\left(3x^2-2x+1\right)-3x^2\left(x^2+2\right)-4x\left(x^2-1\right)\)
Tìm x,y biết:
a) \(-2x\left(10x-3\right)+5x\left(4x+1\right)=25\)
b) \(y\left(5-2y\right)+2y\left(y-1\right)=15\)
c) \(x\left(x+1\right)-\left(x+1\right)=35\)
d) \(x\left(x^2+x+1\right)-x^2\left(x+1\right)=0\)
Rút gọn rồi tính giá trị của các biểu thức sau:
a) \(A=2x\left(x-y\right)-y\left(y-2x\right)\) với \(x=-\dfrac{2}{3};y=-\dfrac{1}{3}\)
b)\(B=5x\left(x-4y\right)-4y\:\left(y-5x\right)\) với \(x=-\dfrac{1}{5};y=-\dfrac{1}{2}\)
c)\(C=x\left(x^2+6x\right)+4\left(3x+2\right)\) với \(x=-11\)
d) \(D=5x\left(4x^2-2x+1\right)-2\left(10x^2-5x-2\right)\) với x = 5
e) \(E=\left(y^3+x^2y\right)\left(x^2+y^2\right)-y\left(x^4+y^4\right)\) với x = 1,5 ; y= -2
g) \(G=\left(x^2-x+3\right)\left(-2x^2+3x+5\right)\) với \(\)\(\)giá trị tuyệt đối của x = 2
Rút gọn biểu thức :
\(2x\left(3x^3-x\right)-4x^2\left(x-x^2+1\right)+\left(x-3x^2\right)x\)
Phân tích đa thức thành nhân tử:
1) \(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)
2) \(\left(x+y\right)^4+x^4+y^4\)
3) \(\left(x+y\right)^7+\left(y-2\right)^7+\left(z-x\right)^7\)
4) \(\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5\)
5) \(\left(x-y\right)^7+\left(y-z\right)^7+\left(z-x\right)^7\)
6) \(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z+x\right)^3\)
7) \(x^3+y^4-6xy+8\)
8) \(x^3+y^3+3x^2+3y^2++6x+6y+8\)
9) \(a^3+ac^2-abc+b^2c+b^3\)