Bài 3: Những hằng đẳng thức đáng nhớ

RM

Tìm x

a)\(27x^3+27x^2+9x+1=64\) b)\(\left(x-2\right)^3-x^2\left(x-6\right)=4\) c)\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x-2\right)\left(x+2\right)=2\)
TH
29 tháng 8 2018 lúc 13:45

a) \(27x^3+27x^2+9x+1=64\)

\(\Rightarrow27x^3+27x^2+9x-63=0\)

\(\Rightarrow27x^3-27x^2+54x^2-54x+63x-63=0\)

\(\Rightarrow27x^2\left(x-1\right)+54x\left(x-1\right)+63\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(27x^2+54x+63\right)=0\)

\(\Rightarrow\left(x-1\right).9\left(3x^2+6x+7\right)=0\)

\(\Rightarrow\left(x-1\right)\left(3x^2+6x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x^2+6x+7=0\end{matrix}\right.\)

Mà ta có:

\(3x^2+6x+7\)

\(=3\left(x^2+2x+\dfrac{7}{3}\right)\)

\(=3\left(x^2+2x+1-1+\dfrac{7}{3}\right)\)

\(=3\left(x+1\right)^2+4\)

\(3\left(x+1\right)^2\ge0\) với mọi x

\(\Rightarrow3\left(x+1\right)^2+4\ge4\)

\(\Rightarrow3x^2+6x+7\) vô nghiệm

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

b) \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)

\(\Rightarrow x^3-6x^2+12x-8-x^3+6x^2=4\)

\(\Rightarrow12x-8=4\)

\(\Rightarrow12x=12\)

\(\Rightarrow x=1\)

c) \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x-2\right)\left(x+2\right)=2\)

\(\Rightarrow x^3-3x^2+3x-1-\left(x^3+3^3\right)+3\left(x^2-2^2\right)=2\)

\(\Rightarrow x^3-3x^2+3x-1-x^3-9+3x^2-12=2\)

\(\Rightarrow3x-22=2\)

\(\Rightarrow3x=24\)

\(\Rightarrow x=8\)

Bình luận (0)