Bài 12: Số thực

NS

Tìm số dư cho phép chia

A = 1 + 5 + 52 + 53 + 54 +.....+ 52016 + 52017 cho 31

MP
26 tháng 10 2017 lúc 15:23

ta có : \(A=1+5+5^2+...+5^{2016}+5^{2017}\)\(2017\) số hạng

\(2017\) chia cho \(3\)\(1\)

\(\Rightarrow\) ta có thể gợp \(A\) lại từng tổng số hạng như sau

\(A=1+\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{2015}+5^{2016}+5^{2017}\right)\)

\(A=1+5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{2015}\left(1+5+5^2\right)\)

\(A=1+5\left(1+5+25\right)+5^4\left(1+5+25\right)+...+5^{2015}\left(1+5+25\right)\)

\(A=1+5.31+5^4.31+...+5^{2015}.31\)

\(A=1+31\left(5+5^4+...+5^{2015}\right)\)

ta có : \(31\left(5+5^4=...+5^{2015}\right)⋮31\)

\(\Rightarrow31\left(5+5^4+...+5^{2015}\right)\) chia hết cho \(31\)

\(1< 3\) nên \(1\) không thể chia cho 3 thêm được nữa

\(\Rightarrow A=1+31\left(5+5^4+...+5^{2015}\right)\) chia cho \(31\)\(1\)

vậy \(A=1+31\left(5+5^4+...+5^{2015}\right)\) chia cho \(31\)\(1\)

Bình luận (4)

Các câu hỏi tương tự
DS
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
DS
Xem chi tiết
NM
Xem chi tiết