\(P=9x^2-8x-5\)
\(P=9x^2-8x+\dfrac{16}{9}-\dfrac{61}{9}\)
\(P=\left(3x-\dfrac{4}{3}\right)^2-\dfrac{61}{9}\)
Xét :
\(\left(3x-\dfrac{4}{3}\right)^2\ge0\)
\(\Leftrightarrow\left(3x-\dfrac{4}{3}\right)^2-\dfrac{61}{9}\ge\dfrac{-61}{9}\)
Vậy GTNN của \(P=-\dfrac{61}{9}\)
Dấu \(=\) xảy ra khi \(x=\dfrac{4}{9}\)
Ta có : 9x2 -8x - 5
= ( 3x )2 - 2 . 3x . \(\dfrac{4}{3}\) + (\(\dfrac{4}{3}\))2 - (\(\dfrac{4}{3}\))2 - 5
= ( 3x - \(\dfrac{4}{3}\) )2 - \(\dfrac{61}{9}\)
Vì ( 3x - \(\dfrac{4}{3}\) )2 >= 0
Vậy GTNN = -61/9