a) \(x^2-20x+101\)
\(=-\left(x^2+20x-101\right)\)
\(=-\left[\left(x^2+2x.10-10^2\right)+1\right]\)
\(=\left[\left(x-10\right)^2+1\right]\)
\(=-\left(x-10\right)^2-1\)
Nhận xét : \(-\left(x-10\right)^2\le0\)với mọi x
\(\Leftrightarrow-\left(x-10\right)^2-1\le-1\) với mọi x
Vậy GTLN của biểu thức là -1 đạt được khi :
(x-10)2 = 0
=> (x-10) =0
=> x = 0 + 10
=> x = 10
~Chắc vậy~
b/ \(4x^2+4x+2\)
= \(\left[\left(2x\right)^2+2.2x.1+1^2\right]+1\)
= \(\left(2x+1\right)^2+1\) \(\ge1\forall x\in R\)
Dấu '' = '' xảy ra <=> \(\left(2x+1\right)^2=0\) => \(x=\dfrac{-1}{2}\)
Vậy MaxB = 1 <=> \(x=\dfrac{-1}{2}\)