\(y=2\sqrt{3}\left(\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\right)+2=2\sqrt{3}sin\left(x+\dfrac{\pi}{6}\right)+2\)
Do \(-1\le sin\left(x+\dfrac{\pi}{6}\right)\le1\)
\(\Rightarrow-2\sqrt{3}+2\le y\le2\sqrt{3}+2\)
\(y=3sinx+\sqrt{3}cosx+2\)
=>\(2-\sqrt{3^2+3}< =y< =2+\sqrt{3^2+3}\)
=>\(2-2\sqrt{3}< =y< =2+2\sqrt{3}\)
\(y_{min}\) xảy ra khi \(3sinx+\sqrt{3}cosx=-2\sqrt{3}\)
=>\(\dfrac{3}{2\sqrt{3}}sinx+\dfrac{\sqrt{3}}{2\sqrt{3}}cosx=-1\)
=>sin(x+a)=-1(với \(sina=\dfrac{1}{2}\))
=>sin(x+pi/6)=-1
=>x+pi/6=-pi/2+k2pi
=>x=-2/3pi+k2pi
\(y_{max}\) xảy ra khi sin(x+pi/6)=1
=>x+pi/6=pi/2+k2pi
=>x=pi/3+k2pi