Bài 4: Ôn tập chương Hàm số lượng giác và phương trình lượng giác

SK
Hướng dẫn giải Thảo luận (2)

a) Ta có:

- Hàm số y = cos 3x có tập xác định là D = R

- ∀ x ∈ D ⇒ - x ∈ D

- và f(-x) = cos 3(-x) = cos (-3x) = cos(3x) = f(x)

Vậy hàm số y = cos 3x là hàm số chẵn

b)

Ta có:

Hàm số \(y=tan\left(x+\dfrac{\pi}{5}\right)\) không là hàm số lẻ vì:

\(y=tan\left(x+\dfrac{\pi}{5}\right)\) có tập xác định là \(D=R\backslash\left\{\dfrac{3\pi}{10}+k\pi\right\}\).

Mà với mọi x ∈ D, ta không suy ra được -x ∈ D

Chẳng hạn:
Lấy \(x=-\dfrac{3\pi}{10}\in D\). Ta có \(-x=\dfrac{3\pi}{10}\notin D\).
Vậy hàm số \(y\left(x\right)\) có tập xác định không tự đối xứng nên \(y=tan\left(x+\dfrac{\pi}{5}\right)\) không là hàm số lẻ.

 

Trả lời bởi Lê Thiên Anh
SK
Hướng dẫn giải Thảo luận (1)

Đồ thị hàm số y = sin x trên đoạn [-2π, 2π]

Dựa vào đồ thị hàm số y = sinx

a) Những giá trị của x ∈ [−3π2,2π][−3π2,2π] để hàm số y = sin x nhận giá trị bằng -1 là:

x=−π2;x=3π2x=−π2;x=3π2

b) Những giá trị của x ∈ [−3π2,2π][−3π2,2π] để hàm số y = sin x nhận giá trị âm là:

x ∈ (-π, 0) ∪ (π, 2 π)


Trả lời bởi Lê Thiên Anh
SK
Hướng dẫn giải Thảo luận (1)

a) Ta có:

−1≤cosx≤1,∀x∈R⇔0≤1+cosx≤2⇔0≤2(1+cosx)≤4⇔1≤√2(1+cosx+1≤3−1≤cos⁡x≤1,∀x∈R⇔0≤1+cos⁡x≤2⇔0≤2(1+cos⁡x)≤4⇔1≤2(1+cos⁡x+1≤3

Vậy y ≤ 3, ∀ x ∈ R

Dấu “ = “ xảy ra ⇔ cos x = 1 ⇔ x = k2π (k ∈ Z)

Vậy ymax = 3 khi x = k2π

b) Ta có:

Với mọi x ∈ R, ta có:

sin(x−π6)≤1⇔3sin(x−π6)≤3⇔3sin(x−π6)−2≤1⇔y≤1sin⁡(x−π6)≤1⇔3sin⁡(x−π6)≤3⇔3sin⁡(x−π6)−2≤1⇔y≤1

Vậy ymax = 1 khi sin(x−π6)=1⇔x=2π3+k2π,k∈Z


Trả lời bởi Lê Thiên Anh
SK
Hướng dẫn giải Thảo luận (3)

a) Ta có:

sin(x+1)=23⇔[x+1=arcsin23+k2πx+1=π−arcsin23+k2π⇔[x=−1+arcsin23+k2πx=−1+π−arcsin23+k2π;k∈Zsin⁡(x+1)=23⇔[x+1=arcsin⁡23+k2πx+1=π−arcsin⁡23+k2π⇔[x=−1+arcsin⁡23+k2πx=−1+π−arcsin⁡23+k2π;k∈Z

b) Ta có:

sin22x=12⇔1−cos4x2=12⇔cos4x=0⇔4x=π2+kπ⇔x=π8+kπ4,k∈Zsin22x=12⇔1−cos⁡4x2=12⇔cos⁡4x=0⇔4x=π2+kπ⇔x=π8+kπ4,k∈Z

c) Ta có:

cot2x2=13⇔⎡⎢⎣cotx2=√33(1)cotx2=−√33(2)(1)⇔cotx2=cotπ3⇔x2=π3+kπ⇔x=2π3+k2π,k∈z(2)⇔cotx2=cot(−π3)⇔x2=−π3+kπ⇔x=−2π3+k2π;k∈Zcot2x2=13⇔[cot⁡x2=33(1)cot⁡x2=−33(2)(1)⇔cot⁡x2=cot⁡π3⇔x2=π3+kπ⇔x=2π3+k2π,k∈z(2)⇔cot⁡x2=cot⁡(−π3)⇔x2=−π3+kπ⇔x=−2π3+k2π;k∈Z

d) Ta có:

tan(π12+12x)=−√3⇔tan(π12+12π)=tan(−π3)⇔π12+12=−π3+kπ⇔x=−5π144+kπ12,k∈Z

Vậy nghiệm của phương trình đã cho là: x=−5π144+kπ12,k∈Z


Trả lời bởi Lê Thiên Anh
SK
Hướng dẫn giải Thảo luận (3)

a) 2cos2x - 3cosx + 1 = 0 (1)

Đặt : t = cosx với điều kiện -1 \(\le t\le1\)

(1)\(\Leftrightarrow\) 2t2 - 3t + 1= 0

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}=cosx\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\left(k\in Z\right)}\)

Trả lời bởi Tuyết Nhi Melody
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)

a) Hàm số \(y=\sin x\) giảm trên đoạn \(\left[\dfrac{\pi}{2};\dfrac{3\pi}{2}\right]\) và tăng trên đoạn \(\left[\dfrac{3\pi}{2};2\pi\right]\)

b) \(y=\sin x\) giảm trên \(\left[-\pi;-\dfrac{\pi}{2}\right]\), tăng trên \(\left[-\dfrac{\pi}{2};0\right]\)

c) \(y=\sin x\) tăng trên \(\left[-2\pi;-\dfrac{3\pi}{2}\right]\), giảm trên \(\left[-\dfrac{3\pi}{2};-\pi\right]\)

Trả lời bởi Nguyen Thuy Hoa
SK
Hướng dẫn giải Thảo luận (2)

a) Do \(-1\le sinx\le1,\forall x\in R\).
Nên giá trị lớn nhất của \(y=3-4sinx\) bằng \(3-4.\left(-1\right)=7\)khi \(sinx=-1\)\(\Leftrightarrow x=-\dfrac{\pi}{2}+k\pi\).
Giá trị nhỏ nhất của \(y=3-4sinx\) bằng \(3-4.1=-1\) đạt được khi \(sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\).

Trả lời bởi Bùi Thị Vân
SK
Hướng dẫn giải Thảo luận (1)

a) Đồ thị của hàm số \(y=\sin2x+1\) thu được từ đồ thị hàm số \(y=\sin2x\) bằng cách tịnh tiến song song với trục tung lên phía trên một đơn vị

b) Đồ thị hàm số \(y=\cos\left(x-\dfrac{\pi}{6}\right)\) thu được từ đồ thị hàm số \(y=\cos x\) bằng cách tịnh tiến song song với trục hoành sang phải một đoạn bằng \(\dfrac{\pi}{6}\)

Trả lời bởi Nguyen Thuy Hoa