Rút gọn biểu thức :
a) \(\left(x+y\right)^2+\left(x-y\right)^2\)
b) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
c) \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)
rút gọn biểu thức
a) \(\left(x+y\right)^2+\left(x-y\right)^2\)
b) 2 ( x - y ) ( x + y ) + \(\left(x+y\right)^2+\left(x-y\right)^2\)
c)\(\left(x-y+z\right)^2-\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)
Cho \(A=\left(x+y+z\right)^3-\left(x+y-z\right)^3-\left(y+z-x\right)^3-\left(x+z-y\right)^3\). CMR A \(⋮\)24
CM: mọi số nguyên x,y,z thì
\(B=\left(x+y+z\right)^3-\left(y+z-x\right)^3-\left(x+z-y\right)^3-\left(x+y-z\right)^3\) luôn chia hết cho 24
Rút gọn biểu thức :
\(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)
( Có công thức mấy bạn ghi ra giúp tớ với )
Cho 3 số x; y ; z là 3 số thỏa mạn: \(xyz=1;x+y+z=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
tính giá trị biểu thức : \(P=\left(x^{19}-1\right)\left(y^5-1\right)\left(z^{2016}-1\right)\)
Rút gọn các biểu thức :
a) \(P=\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)
b) \(Q=\left(x-y\right)^3+\left(x+y\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
Rút gọn M
M= \(\dfrac{x\left(yz-x^2\right)+y\left(zx-y^2\right)+z\left(xy-z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
Thu gọn: \(\left(x-y+z\right)^2-\left(2x-y+1\right)^2-\left(y-z+2\right)^2+\left(2x-1\right)^2-3\left(2y-3z\right)^2\)