Ôn tập phép nhân và phép chia đa thức

NA

Rút gọn biểu thức:

B=(\(\dfrac{1}{x^2-xy}-\dfrac{3y^2}{x^4-xy^3}-\dfrac{y}{x^3+x^2y+xy^2}\) ) .(\(y+\dfrac{x^2}{x+y}\) )

PT
11 tháng 12 2017 lúc 10:27

\(B=\left(\dfrac{1}{x^2-xy}-\dfrac{3y^2}{x^4-xy^3}-\dfrac{y}{x^2+x^2y+xy^2}\right).\left(y+\dfrac{x^2}{x+y}\right)\)

\(B=\left(\dfrac{1}{x\left(x-y\right)}-\dfrac{3y^2}{x\left(x^3-y^3\right)}-\dfrac{y}{x\left(x^2+xy+y\right)}\right).\left(y+\dfrac{x^2}{x+y}\right)\)

\(B=\left(\dfrac{1}{x\left(x-y\right)}-\dfrac{3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{y}{x\left(x^2+xy+y^2\right)}\right).\left(y+\dfrac{x^2}{x+y}\right)\)

\(B=\left(\dfrac{x^2+xy+y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{y\left(x-y\right)}{x\left(x^2+xy+y^2\right)}\right).\left(y+\dfrac{x^2}{x+y}\right)\)

\(B=\left(\dfrac{x^2+xy+y^2-3y^2-xy+y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right).\left(y+\dfrac{x^2}{x+y}\right)\)

\(B=\dfrac{x^2+2y^2-3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}.\left(y+\dfrac{x^2}{x+y}\right)\)

\(B=\dfrac{x^2+2y^2-3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}.\left(\dfrac{y\left(x+y\right)}{x+y}+\dfrac{x^2}{x+y}\right)\)

\(B=\dfrac{x^2+2y^2-3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}.\dfrac{x^2+xy+y^2}{x+y}\)

\(B=\dfrac{x^2+2y^2-3y^2}{x\left(x^2-y^2\right)}\)

Bình luận (0)

Các câu hỏi tương tự
QN
Xem chi tiết
TT
Xem chi tiết
ST
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
DA
Xem chi tiết
NT
Xem chi tiết
TL
Xem chi tiết
TH
Xem chi tiết