\(x^6+1\)
\(=x^6-x^4+x^2+x^4-x^2+1\)
\(=x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
x6 + 1= (x3)2 + (13)2
= (x3 + 1)2
= [(x + 1)(x2 - x + 1)]2
= (x2 + 1)(x4 - x2 + 1)
\(x^6+1=\left(x^2\right)^3+1^3=\left(x^2+1\right)\left(x^2-x^2+1^2\right)=\left(x^2+1\right)\)
\(x^6+1\)
\(=\left(x^2\right)^3+1^3\)
\(=\left(x^2+1\right)\left[\left(x^2\right)^2-x^2+1\right]\)
\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
x6+1=(x2)3+13=(x2+1)(x4-x2.1+1)
=(x2+1)(x4-x2+1)
ta có:\(x^6+1=\left(x^2\right)^3+1^3\)
\(=\left(x^2+1\right)\left(x^2-2x+1\right)^2\)
\(=\left(x^2+1\right)\left(x^4-4x^2+1\right)\)