Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

KS

Phân tích đa thức thành nhân tử:
a) x^8 + x^4 + 1
b) x^10 + x^5 + 1
(((((( Help me , Please !! ))))))

LF
10 tháng 6 2017 lúc 21:11

a)\(x^8+x^4+1\)

\(=\left(x^8+2x^4+1\right)-x^4\)

\(=\left(x^4+1\right)^2-x^4\)

\(=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)

\(=\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)

b)\(x^{10}+x^5+1\)

\(=\left(x^{10}+x^9+x^8\right)-\left(x^9+x^8+x^7\right)+\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)

\(=x^8\left(x^2+x+1\right)-x^7\left(x^2+x+1\right)+x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)

Bình luận (0)
TB
10 tháng 6 2017 lúc 21:35

a) \(x^8+x^4+1\)

= \(x^8+2x^4-x^4+1\)

= \(\left(x^4+1\right)^2-x^4\)

= \(\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)

= \(\left(x^4-x^2+1\right)\left(x^4+2x^2-x^2+1\right)\)

= \(\left(x^4-x^2+1\right)\left[\left(x^2+1\right)^2-x^2\right]\)

= \(\left(x^4-x^2+1\right)\left(x^2+1-x^2\right)\left(x^2+1+x^2\right)\)

= \(\left(x^4-x^2+1\right)\left(2x^2+1\right)\)

b) \(x^{10}+x^5+1\)

= ( x10+x9+x8) - (x9+x8+x7) + (x7+x6+x5) - (x6+x5+x4) + (x5+x4+x3) - (x3+x2+x) + (x2+x+1)

= (x2+x+1)(x8 - x7+x5-x4+x3-x+1)

Bình luận (2)

Các câu hỏi tương tự
NH
Xem chi tiết
H24
Xem chi tiết
QN
Xem chi tiết
TT
Xem chi tiết
GL
Xem chi tiết
PN
Xem chi tiết
TP
Xem chi tiết
KL
Xem chi tiết
NT
Xem chi tiết