Bài 3: Những hằng đẳng thức đáng nhớ

HN

- Hằng đẳng thức -
Bài 1 : Tìm giá trị nhỏ nhất của biểu thức
a. C = x2 - 6x + 11
b. D = (x-1) (x+2) (x+3) (x+6)
c. x2 -4x +y2 -8y +6
d. G = x2 -4xy +5y2 =10x - 22y + 28
* Hướng dẫn : câu d. G = (x-2+5)2 + (y-1)2 +2 lớn hơn hoặc bằng 2
____________ GIÚP MÌNH VỚI . MIK CẦN GẤP_____________

an
8 tháng 7 2018 lúc 20:08

<=> xaa ) C= x2-6x + 11= (x-3)2 +2

ta co : (x-3)2 + > hoặc = 2

=> C đạt giá trị nhỏ nhất khi C=2

<=> x=3

b) D =(x-1) (x+2)(x+3)(x+6)

= [ (x-1)(x+6)][(x+2)(x+3)]

=(x2 +5x -6)(x2+5x +6)

=(x2+5x )2 - 36

ta có (x2 +5x)2 -36 luôn > hoặc = -36

=> D đạt GTNN khi D = -36

<=>(x2 + 5x)2 =0

=> x = 0 hoac x =-5

c) E = x2 - 4x + y2 - 8y + 6

=(x2 -4x +4 ) + (y2 - 8y +16 ) -14

= (x -2)2 +( y-4)2 -14

ta co (x-2)2 + (y-4)2 -14 luôn > hoặc = -14

=> E dat GTNN khi E = -14

<=> (x-2)2​ =0 va (y-4)2 =0

<=> x =2 va y=4

d) G =x2 -4xy +5y2 + 10x -22y + 28 ( de sai nha ban )

= [(x2 - 4xy + 4y2 ) + 10x -20y +25 ]+ ( y2 -2y +1 ) +2

= [(x-2y)2 + 10x - 20y + 25 ] + (y-1)2 +2

= [( x-2y)2 + 2. 5 (x-2y) + 25 ] + (y-1)2 +2

= (x-2y +5)2 + ( y-1)2 +2

ta co (x-2y +5 )2 + (y-1)2 +2 luôn > hoặc = 0

=> G đạt GTNN khi (x-2y+5 )2=0 hoac (y-1)2 =0

<=> y-1 = 0 => y = 1

,=> x =-3

Bình luận (1)

Các câu hỏi tương tự
HN
Xem chi tiết
LH
Xem chi tiết
LT
Xem chi tiết
VD
Xem chi tiết
ND
Xem chi tiết
TH
Xem chi tiết
CP
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết