\(\Leftrightarrow\left(x^2+2x-1+3\right)\left(x^2+2x-1-3\right)=0\)
\(\Leftrightarrow\left(x^2+2x+2\right)\left(x^2+2x-4\right)=0\)
\(\Rightarrow x^2+2x-4=0\)
\(\Leftrightarrow x\left(x+2\right)=4\)
\(\Rightarrow\)
x | 1 | -1 | 2 | -2 | 4 | -4 |
x+2 | 4 | -4 | 2 | -2 | 1 | -4 |
\(\Rightarrow x\in\left\{\pm1,\pm2,\pm4,-3,0,-6\right\}\)
\(x^2+2x-4\\ =\left(x^2+2x+1\right)-5\\ =\left(x+1\right)^2-5\\ =\left(x+1-\sqrt{5}\right)\left(x+1+\sqrt{5}\right)\)