Ta có:
\(x^8+98x^4+1\)
= \(\left(x^8+2x^4+1\right)+96x^4\)
= \(\left(x^4+1\right)^2+16\left(x^4+1\right)^2-16\left(x^4+1\right)^2+64x^4+32x^4\)
= \(\left[\left(x^4+1\right)^2+16\left(x^4+1\right)^2+64x^4\right]-\left[16\left(x^4+1\right)^2-32x^4\right]\)
= \(\left(x^4+1+8x^2\right)^2-16x^2\left(x^4+1-2x^2\right)\)
= \(\left(x^4+1+8x^2\right)^2-\left(4x\right)^2\left(x^2-1\right)^2\)
= \(\left(x^4+1+8x^2\right)^2-\left(4x^3-4x\right)^2\)
= \(\left(x^4+1+8x^2-4x^3+4x\right)\left(x^4+1+8x^2+4x^3-4x\right)\)