Bài 3: Những hằng đẳng thức đáng nhớ

DT

CMR: x2+y2+z2-xy-yz-xz=\(\frac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{2}\)

H24
25 tháng 6 2020 lúc 21:54

Ta có : \(x^2+y^2+z^2-xy-yz-zx\)

\(=\frac{1}{2}.\left(2x^2+2y^2+2z^2-2xy-2yz-2zx\right)\)

\(=\frac{\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)}{2}\)

\(=\frac{\left(x-y\right)+\left(y-z\right)^2+\left(z-x\right)^2}{2}\) ( đpcm )

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
TM
Xem chi tiết
VK
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
LY
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết