Bài 1: Nhân đơn thức với đa thức

VN

CMR nếu (a^2+b^2+c^2)(x^2+y^2+z^2)=(ax+by+cx)^2 với xy khác 0 thì a/x=b/y=c/z

giải CHI TIẾT

TN
5 tháng 6 2017 lúc 10:15

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-\left(a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2czax\right)=0\)\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2bycz-2czax=0\)\(\Rightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2czax=0\)\(\Rightarrow\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2axcz+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)\(\Rightarrow\left(ax-by\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(ay-bx\right)^2=0\\\left(az-cx\right)^2=0\\\left(bz-cy\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}ay=bx\\az=cx\\bz=cy\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{a}{x}=\dfrac{c}{z}\\\dfrac{b}{y}=\dfrac{c}{z}\end{matrix}\right.\)\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\Rightarrowđpcm\)

Bình luận (0)

Các câu hỏi tương tự
KN
Xem chi tiết
OW
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
TN
Xem chi tiết
HH
Xem chi tiết
LH
Xem chi tiết
BB
Xem chi tiết