\(x^2+2xy+2y^2+2y+5=\left(x^2+2xy+y^2\right)+\left(y^2+2y+1\right)+4=\left(x+y\right)^2+\left(y+1\right)^2+4\\ \\ Vì\left(x+y\right)^2\ge0\left(\forall x,y\right),\left(y+1\right)^2\ge0\left(\forall y\right)\\ \\ \Rightarrow\left(x+y\right)^2+\left(y+1\right)^2+4\ge4\forall x,y\\ \\ \\ \\ \\ Vậy......................\)